首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 155 毫秒
1.
To investigate the effects of training in normoxia vs. training in normobaric hypoxia (fraction of inspired O2 = 20.9 vs. 13.5%, respectively) on the regulation of Na+-K+-ATPase pump concentration in skeletal muscle (vastus lateralis), 9 untrained men, ranging in age from 19 to 25 yr, underwent 8 wk of cycle training. The training consisted of both prolonged and intermittent single leg exercise for both normoxia (N) and hypoxia (H) during a single session (a similar work output for each leg) and was performed 3 times/wk. Na+-K+-ATPase concentration was 326 +/- 17 (SE) pmol/g wet wt before training (Control), increased by 14% with N (371 +/- 18 pmol/g wet wt; P < 0.05), and decreased by 14% with H (282 +/- 20 pmol/g wet wt; P < 0.05). The maximal activity of citrate synthase, selected as a measure of mitochondrial potential, showed greater increases (P < 0.05) with H (1.22 +/- 0.10 mmol x h-1 x g wet wt-1; 70%; P < 0.05) than with N (0.99 +/- 0.10 mmol x h-1 x g wet wt-1; 51%; P < 0.05) compared with pretraining (0.658 +/- 0.09 mmol x h-1 x g wet wt-1). These results demonstrate that normobaric hypoxia induced during exercise training represents a potent stimulus for the upregulation in mitochondrial potential while at the same time promoting a downregulation in Na+-K+-ATPase pump expression. In contrast, normoxic training stimulates increases in both mitochondrial potential and Na+-K+-ATPase concentration.  相似文献   

2.
The endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several mediators of vasodilation, which include prostacyclin (PGI(2)), nitric oxide, and endothelium-derived hyperpolarizing factor (EDHF). We have recently defined the role of nitric oxide and PGI(2) in the dilation of submucosal intestinal arterioles from patients with normal bowel function. However, significant endothelium-dependent dilator capacity to ACh remained after inhibiting both these mediators. The current study was designed to examine the potential role of EDHF in human intestinal submucosal arterioles. ACh elicited endothelium-dependent relaxation in the presence of inhibitors of nitric oxide synthase and cyclooxygenase (23 +/- 10%, n = 6). This ACh-induced relaxation was inhibited and converted to constriction by catalase (-53 +/- 10%, n = 6) or KCl (-30 +/- 3%, n = 7), whereas 17-octadecynoic acid and 6-(2-propargylloxyphenyl) hexanoic acid, two inhibitors of cytochrome P450 monooxygenase, had no significant effect (3 +/- 1% and 20 +/- 8%, n = 5, respectively). Exogenous H(2)O(2) elicited dose-dependent relaxation of intact microvessels (52 +/- 10%, n = 7) but caused frank vasoconstriction in arterioles denuded of endothelium (-73 +/- 8%, n = 7). ACh markedly increased the dichlorofluorescein fluorescence in intact arterioles in the presence of nitric oxide synthase and cyclooxygenase inhibitors compared with control and compared with catalase-treated microvessels (363.6 +/- 49, 218.8 +/- 10.6, 221.9 +/- 27.9, respectively, P < 0.05 ANOVA, n = 5 arbitrary units). No changes in the dichlorofluorescein fluorescence were recorded in vessels treated with ACh alone. These results indicate that endothelial production of H(2)O(2) occurs in response to ACh in human gut mucosal arterioles but that H(2)O(2) is not an EDHF in this tissue. Rather, we speculate that it stimulates the release of a chemically distinct EDHF.  相似文献   

3.
内源性硫化氢在脂多糖引起的肺动脉高压中的作用   总被引:2,自引:0,他引:2  
Huang XL  Zhou XH  Wei P  Zhang XJ  Meng XY  Xian XH 《生理学报》2008,60(2):211-215
为观察硫化氢(hydrogen sulfide,H2s)在脂多糖(1ipopolysaccharide,LPS)引起的肺动脉高压中的作用,应用离体血管环张力测定方法测定肺动脉反应性,采用生物化学方法测定肺动脉组织中H2S产出率和胱硫醚-γ-裂解酶(cystathionine γ-lyase,CSE)活性,定量PCR方法测定肺动脉组织中CSE表达水平.结果如下:(1)与对照组相比,LPS可显著升高肺动脉平均压(mean pulmonary arterial pressure,mPAP)[(1.82±0.29)kPa vs(1.43±0.26)kPa,P<0.01],降低肺动脉组织中H2S产出率[(26.33±7.84)vs(42.92±8.73)pmoFg wet tissue per minute,P<0.01]和ACh诱导的肺动脉内皮依赖性舒张反应[(75.72±7.22)%vs(86.40±4.40)%,P<0.01];(2)NariS可部分逆转上述变化,而PPG加剧上述变化;(3)CSE活性和CSE mRNA表达的变化与H2S产出率的变化相同.结果提示,LPS对内皮依赖性舒张反应的抑制导致肺动脉高压的发生,此作用可能与H2S有关.  相似文献   

4.
Caveolae represent an important structural element involved in endothelial signal-transduction. The present study was designed to investigate the role of caveolae in endothelium-dependent relaxation of different vascular beds. Caveolae were disrupted by cholesterol depletion with filipin (4x10(-6) g L(-1)) or methyl-beta-cyclodextrin (MCD; 1x10(-3) mol L(-1)) and the effect on endothelium-dependent relaxation was studied in rat aorta, small renal arteries and mesenteric arteries in the absence and presence of L-NMMA. The contribution of NO and EDHF, respectively, to total relaxation in response to acetylcholine (ACh) gradually changed from aorta (71.2+/-6.1% and 28.8+/-6.1%), to renal arteries (48.6+/-6.4% and 51.4+/-6.4%) and to mesenteric arteries (9.1+/-4.0% and 90.9+/-4.1%). Electron microscopy confirmed filipin to decrease the number of endothelial caveolae in all vessels studied. Incubation with filipin inhibited endothelium-dependent relaxation induced by cumulative doses of ACh (3x10(-9)-10(-4) mol L(-1)) in all three vascular beds. In aorta, treatment with either filipin or MCD only inhibited the NO component, whereas in renal artery both NO and EDHF formation were affected. In contrast, in mesenteric arteries, filipin treatment only reduced EDHF formation. Disruption of endothelial caveolae is associated with the impairment of both NO and EDHF in acetylcholine-induced relaxation.  相似文献   

5.
Perinatal adverse events such as limitation of nutrients or oxygen supply are associated with the occurrence of diseases in adulthood, like cardiovascular diseases and diabetes. We investigated the long-term effects of perinatal hypoxia on the lung circulation, with particular attention to the nitric oxide (NO)/cGMP pathway. Mice were placed under hypoxia in utero 5 days before delivery and for 5 days after birth. Pups were then bred in normoxia until adulthood. Adults born in hypoxia displayed an altered regulation of pulmonary vascular tone with higher right ventricular pressure in normoxia and increased sensitivity to acute hypoxia compared with controls. Perinatal hypoxia dramatically decreased endothelium-dependent relaxation induced by ACh in adult pulmonary arteries (PAs) but did not influence NO-mediated endothelium-independent relaxation. The M(3) muscarinic receptor was implicated in the relaxing action of ACh and M(1) muscarinic receptor (M(1)AChR) in its vasoconstrictive effects. Pirenzepine or telenzepine, two preferential inhibitors of M(1)AChR, abolished the adverse effects of perinatal hypoxia on ACh-induced relaxation. M(1)AChR mRNA expression was increased in lungs and PAs of mice born in hypoxia. The phosphodiesterase 1 (PDE1) inhibitor vinpocetine also reversed the decrease in ACh-induced relaxation following perinatal hypoxia, suggesting that M(1)AChR-mediated alteration of ACh-induced relaxation is due to the activation of calcium-dependent PDE1. Therefore, perinatal hypoxia leads to an altered pulmonary circulation in adulthood with vascular dysfunction characterized by impaired endothelium-dependent relaxation and M(1)AChR plays a predominant role. This raises the possibility that muscarinic receptors could be key determinants in pulmonary vascular diseases in relation to "perinatal imprinting."  相似文献   

6.
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P 相似文献   

7.
Impairment of endothelium-dependent pulmonary vasodilation has been implicated in the development of pulmonary hypertension. Pulmonary vascular smooth muscle cells and endothelial cells communicate electrically through gap junctions; thus, membrane depolarization in smooth muscle cells would depolarize endothelial cells. In this study, we examined the effect of prolonged membrane depolarization induced by high K(+) on the endothelium-dependent pulmonary vasodilation. Isometric tension was measured in isolated pulmonary arteries (PA) from Sprague-Dawley rats, and membrane potential was measured in single PA smooth muscle cells. Increase in extracellular K(+) concentration from 4.7 to 25 mM significantly depolarized PA smooth muscle cells. The 25 mM K(+)-mediated depolarization was characterized by an initial transient depolarization (5-15 s) followed by a sustained depolarization that could last for up to 3 h. In endothelium-intact PA rings, ACh (2 microM), levcromakalim (10 microM), and nitroprusside (10 microM) reversibly inhibited the 25 mM K(+)-mediated contraction. Functional removal of endothelium abolished the ACh-mediated relaxation but had no effect on the levcromakalim- or the nitroprusside-mediated pulmonary vasodilation. Prolonged ( approximately 3 h) membrane depolarization by 25 mM K(+) significantly inhibited the ACh-mediated PA relaxation (-55 +/- 4 vs. -29 +/- 2%, P < 0.001), negligibly affected the levcromakalim-mediated pulmonary vasodilation (-92 +/- 4 vs. -95 +/- 5%), and slightly but significantly increased the nitroprusside-mediated PA relaxation (-80 +/- 2 vs. 90 +/- 3%, P < 0. 05). These data indicate that membrane depolarization by prolonged exposure to high K(+) concentration selectively inhibited endothelium-dependent pulmonary vasodilation, suggesting that membrane depolarization plays a role in the impairment of pulmonary endothelial function in pulmonary hypertension.  相似文献   

8.
We reported previously that acetylcholine (ACh)-induced endothelium-dependent relaxation of rat mesenteric microvessels depended both on nitric oxide (NO) and on a charybdotoxin (CTX)-sensitive endothelium-derived hyperpolarizing vasodilator. Cytochrome P450 (CYP)-dependent arachidonic acid metabolites act in some systems as hyperpolarizing vasodilators. We sought to quantitate contributions of such metabolites to the CTX-sensitive component of ACh-induced vasodilation in isolated rat mesenteric resistance arteries. ACh relaxed these vessels nearly completely (93.3+/-1.2%, n = 71); cyclooxygenase inhibition with indomethacin did not diminish this response (94.3+/-11.4%, n = 9). NO synthase inhibition with Nitro-L-arginine (NNLA) reduced relaxation by 30% (n = 54, p<0.05). Pretreatment of vessels with CYP inhibitors, either clotrimazole (CTM) or 17-octadecynoic acid (17-ODYA), or with selective K+ channel inhibitors, either tetraethyammonium acetate (TEA) or CTX, each led to similar small reductions in maximal relaxation (17%, 22%, 16%, and 9% respectively, n = 3-6). Combined pretreatment with NNLA + either (CTM or 17-ODYA) or (TEA or CTX) each led to similar maximal relaxations (52.2+/-4.8%, 50.6+/-9.2, 37.6+/-8.6%, and 44.1+/-11.5%, respectively, n = 6-35; p<0.05 for NNLA+[CTM or TEA or CTX] vs NNLA alone). Combined pretreatment with NNLA+CTM+(CTX or TEA) led to similar maximal relaxations (43.0+/-7.3%, 43.7+/-15%, n = 6-11) that did not differ from values in vessels pretreated with either NNLA+CTM or NNLA+(CTX or TEA). We conclude that the ACh-induced vasodilation was insensitive to cyclooxygenase inhibition, partially sensitive to NO synthase inhibition, and that the K+ channel blockers TEA and CTX identified the same minor component of ACh relaxation as did the CYP inhibitor CTM.  相似文献   

9.
李超英  李之望 《生理学报》1990,42(5):437-445
在离体灌流的蟾蜍背根神经节(DRG)标本上,用微电极进行胞内记录。在73个神经元中,依神经纤维的传导速度将神经元分为 A 型及 C 型,其中 A 型细胞67个,C 型6个,静息膜电位为-67.5±1.3mV((?)±SE)。当加4×10~(-4)—6×10~(-4)mol/L 乙酰胆碱(ACh),可观察到如下四种膜电位变化:1.超极化:幅值9.1±3.0mV((?)±SE,n=23);(2)去极化:幅值12.9±2.2mV((?)+SE,n=20);(3)双相反应(n=24):先超极化,后去极化,超极化幅值8.0±2.4mV((?)+SE),去极化幅值10.9±3.1mV((?)±SE);(4)无反应(n=6)。用阿托品(1.3×10~(-5)mol/L,n=23),或同时应用筒箭毒与六甲双铵(浓度均为1.4×10~(-5)mol/L,n=8)灌流,能分别阻断 ACh 引起的膜的超极化或去极化。ACh 引起超极化反应时膜电导平均增加13.8%,翻转电位值大约-96mV。四乙铵(TEA,20mmol/L)能使 ACh 的去极化幅值增加48.2±3.2%((?)±SE,n=6),超极化幅值减小79.4±4.3%((?)±SE,n=8)。MnCl_2(4mmol/L)使 ACh 的去极化及超极化幅值分别减小54.2±7.2%((?)±SE,n=5)及69.2±6.4%((?)±SE,n=14)。以上结果提示:ACh 引起的 DRG 神经细胞膜去极化反应由 N 型乙酰胆碱受体介导,而超极化反应由 Μ 型乙酰胆碱受体介导,前者可能包含了多种离子电导的改变,后者则可能与钾电导增加有关。  相似文献   

10.
一氧化碳对大鼠离体肺动脉的舒张作用   总被引:1,自引:0,他引:1  
Ding XQ  Liu GM  Wang JK  Sheng ZR 《生理学报》2002,54(1):38-42
本研究观察了一氧化碳 (CO)对离体大鼠肺动脉的舒张作用。制备Wistar大鼠肺动脉环 ,作出ACh浓度效应曲线之后 ,肺动脉环用一氧化氮合成酶抑制剂L NAME 3 0 μmol/L (n =10 )或血红素氧化酶抑制剂ZnPPIX 10μmol/L +L NAME 3 0 μmol/L (n =10 )孵育 3 0min ,再制备一个ACh的浓度效应曲线 ,观察ZnPPIX对ACh的浓度效应曲线的影响。另取一组肺动脉环 ,分为内皮完整组和去内皮组 ,观察外源性CO对肺动脉环张力的影响。结果表明 ,用L NAME孵育后 ,ACh的血管舒张反应受抑 ,最大抑制率为 5 0 4± 9 2 % ;用ZnPPIX +L NAME孵育后 ,ACh的血管舒张反应进一步受抑 ,最大抑制率为 84 4± 11 2 %。外源性CO无论对内皮完整组还是去内皮组肺动脉都有舒张作用。本研究提示 ,ZnPPIX可抑制ACh的内皮依赖性肺动脉舒张反应 ,CO是一个内皮源性的血管舒张因子 ,外源性CO可舒张肺动脉  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号