首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The growth response of Hevea brasiliensis to vesicular-arbuscular mycorrhizal (VAM) fungi inoculation was assessed in two field nursery sites containing indigenous mycorrhizal fungi (IMF). Seedling rootstocks were inoculated with mixed VAM-fungal species in a factorial combination with phosphorus (P) fertilizer application, and planted in randomised blocks on sandy (site 1) and clayey (site 2) soils. Plants were harvested after 26 weeks for measurements of shoot dry weight (DW), stem diameter, height, mycorrhizal root colonization and leaf nutrient contents. At site 1, VAM increased shoot DW, stem diameter and plant height only in treatments without P applied. Increases in shoot DW due to VAM were 70% greater than the uninoculated controls although this was reduced to 5% when P was applied. At site 2, VAM inoculation also increased shoot DW and stem diameter but the magnitude of the increases was smaller. Shoot DW response due to VAM was only 29%. At this second site, applying phosphate to uninoculated plants did not increase shoot yields further. Leaf concentrations of all nutrients were unaffected by VAM at both sites, except for copper (Cu) which was increased by VAM in treatments where P was not applied. However, leaf contents of P, potassium (K), magnesium (Mg) and Cu were increased by VAM at site 1, and of leaf nitrogen (N) and K at site 2. These experiments demonstrate that VAM-fungi could be introduced into field nursery sites to improve growth and P uptake by H. brasiliensis. The relevance of VAM-fungi to H. brasiliensis seedling rootstock development and the influence of IMF in determining field responses is discussed.  相似文献   

2.
Plant growth-promoting bacteria (PGPB) strains that contain the enzyme 1-amino- cyclopropane-1-carboxylate (ACC) deaminase can lower stress ethylene levels and improve plant growth. In this study, ACC deaminase-producing bacteria were isolated from a salt-impacted (~50 dS/m) farm field, and their ability to promote plant growth of barley and oats in saline soil was investigated in pouch assays (1% NaCl), greenhouse trials (9.4 dS/m), and field trials (6–24 dS/m). A mix of previously isolated PGPB strains UW3 (Pseudomonas sp.) and UW4 (P. sp.) was also tested for comparison. Rhizobacterial isolate CMH3 (P. corrugata) and UW3+UW4 partially alleviated plant salt stress in growth pouch assays. In greenhouse trials, CMH3 enhanced root biomass of barley and oats by 200% and 50%, respectively. UW3+UW4, CMH3 and isolate CMH2 also enhanced barley and oat shoot growth by 100%–150%. In field tests, shoot biomass of oats tripled when treated with UW3+UW4 and doubled with CHM3 compared with that of untreated plants. PGPB treatment did not affect salt uptake on a per mass basis; higher plant biomass led to greater salt uptake, resulting in decreased soil salinity. This study demonstrates a method for improving plant growth in marginal saline soils. Associated implications for salt remediation are discussed.  相似文献   

3.
Ethylene and in vitro rooting of rose shoots   总被引:2,自引:0,他引:2  
Effects of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), ethylene biosynthesis inhibitor, (CoCl2), and inhibitor of ethylene binding to receptors, 1-methylcyclopropene (1-MCP), on ethylene production and rooting in shoot culture of Rosa hybrida L. cv. Alba meidiland were studied. Additionally, effect of ethylene removal by KMnO4 and HgClO4 on rooting was tested. ACC increased ethylene production and delayed root formation, decreased the number of roots per shoot and inhibited root growth. In contrast, inhibition of ethylene production by CoCl2 accelerated root emergence, and increased the number of roots per shoot. Likewise, removing ethylene from the ambient atmosphere improved root emergence and, increased root number of per shoot and markedly inhibited root growth. Blocking the ethylene receptors by 1-MCP increased ethylene level in the ambient atmosphere and increased both emergence and root formation. Both ethylene biosynthesis and action are involved in the control of rooting. Ethylene concentration in glass jars was too high for root emergence and formation, but was appropriate for root growth. CoCl2 or 1-MPC can be recommended for regulation of rooting in rose shoot culture, since both emergence and number of roots were improved but root growth was not inhibited.  相似文献   

4.
Ascorbic acid improves conversion of white spruce somatic embryos   总被引:7,自引:0,他引:7  
Summary The effects of exogenous applications of ascorbic acid on white spruce somatic embryogenesis were examined. Increasing concentrations of ascorbate (1 μM to 100 μM) in the germination medium enhanced somatic embryo conversion in a linear fashion. At the optimal ascorbate level (100 μM) the number of embryos able to undergo normal conversion, i.e., emergence of both root and shoot, increased from 34% (control) to 58%. The effect of ascorbate had a more pronounced effect on shoot growth than on root emergence; and at 100 μM ascorbate, the percentage of embryos able to produce new leaf primordia increased from 47% (control) to 79%. Root emergence increased slightly from 64% in the control embryos to 74% in the presence of ascorbic acid. The ascorbate-treated embryos were characterized by an enlarged apical region, presumably due to a larger number of leaf primordia produced, and by dark green leaves. When allowed to grow further, these embryos were able to develop into normal plantlets.  相似文献   

5.
Batch experiments were designed to characterize a multiple metal resistant bacterium Burkholderia sp. D54 isolated from metal contaminated soils in the Dabaoshan Mine in South China, and a follow-up experiment was conducted to investigate the effects of inoculating the isolate on plant growth and metal uptake by Sedum alfredii Hance grown on soils collected from a heavily contaminated paddy field in Daxing County, Guangxi Zhuang Automounous Region, Southwest China. Our experiments showed that strain D54 produced indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and solubilizing inorganic phosphate and solubilized insoluble metal bearing minerals. Bacterial inoculation significantly enhanced S. alfredii biomass production, and increased both shoot and root Cd concentration, but induced little variation in root/shoot Pb concentration and shoot Zn concentration. Despite this, the total shoot and root uptake of Cd, Pb and Zn in S. alfredii inoculated with D54 increased greatly compared to the non-inoculated controls. It was concluded that inoculation with strain D54 could help S. alfredii grow better on metal contaminated soils, produce more biomass, and remove more metals from soil, which implies improved efficiency of phytoextraction from metal contaminated soil. The knowledge gained from the present experiments constitutes an important advancement in understanding of the interaction between plant growth-promoting bacteria and hyperaccumulators with regard to plant ability to grow and remove the multiple heavy metals from soils.  相似文献   

6.
Aluminium toxicity is an important factor limiting plant growth mi acid soils. Symptoms of B deficiency and Al toxicity are very similar and generally associated with impaired membrane Function and root growth. Thus the objective of this study was to determine whether supplemental B prevents Al inhibition of root growth and development. Squash (Cucurbita pepo L. cv. Sunbar) was grown in hydroponic nutrient media with 44 mmol m?3 free Al and B concentrations extending from 5 to 100 mmol m?3. Our results establish that B protects against Al inhibition of root growth. Protection was apparent at all levels of organization examined: primary root and lateral root lengths; primary root cell elongation, cell production rate, tissue organization and cell structure; primary root morphology and maturation. Protection against Al inhibition was also apparent for shoot growth. These studies were undertaken in solution culture to limit the variables examined; however, the underlying motivation for this study is the problem of worldwide Al toxicity in soils. Therefore, the effect of adding additional B to a high-Al soil was also investigated and is the subject of the companion paper (Le Noble. Blevins & Miles 1996, Plant, Cell and Environment 19, 1143–1148).  相似文献   

7.
Soil moisture and temperature, sowing depth and penetration resistance affect the time and percentage of seedling emergence, which are crucial for the simulation of drought‐limited crop production. The aim of this research was to measure the effect of soil water potential on germination and emergence, shoot and root elongation rates (SER and RER) of two different seed/crop types. Sugar beet and durum wheat seeds were sown into two soils (clay and loam), submitted to five matric potentials (?0.01, ?0.1, ?0.2, ?0.4 and ?0.8 MPa) and incubated at constant temperature (25°C) and humidity. Cumulative count analysis was used to estimate parameters of the distribution of germination or emergence times for each box of beet or wheat seeds and to derive estimates for base potentials (ψb), hydrothermal times (H) and numbers of viable units. In a second experiment, NaCl solution was used to mimic the soil matric potentials to estimate potential RER and SER. Germination of sugar beet was slightly more sensitive to matric potential than durum wheat (ψb of ?1.13 and ?1.23 MPa, respectively). H(g) was longer for sugar beet than for durum wheat (67 vs 47 MPa °Cd). For emergence ψb was similar for both seed types and soils but hydrothermal times (H(e)) were 40 MPa °Cd higher for sugar beet than for wheat. Emergence was about 20 MPa °Cd earlier in loam than in clay. SER measured in soils were similar for both crops and for durum wheat it agreed with those determined in NaCl solution. RER and SER fell with decreasing osmotic potential to approximately 20% of their maximum values (1.03 mm h?1 and 0.57 mm h?1, respectively). Seedling viability decreased with decreasing matric potential and more in clay than in loam soil and more for sugar beet than durum wheat. Seed and soil aggregate size are discussed with respect to the effects of water diffusion and soil–seed contact on germination and emergence modelling.  相似文献   

8.
In agricultural soils, amino acids can represent vital nitrogen (N) sources for crop growth and yield. However, the molecular mechanisms underlying amino acid uptake and allocation are poorly understood in crop plants. This study shows that rice (Oryza sativa L.) roots can acquire aspartate at soil concentration, and that japonica subspecies take up this acidic amino acid 1.5‐fold more efficiently than indica subspecies. Genetic association analyses with 68 representative japonica or indica germplasms identified rice Lysine‐Histidine‐type Transporter 1 (OsLHT1) as a candidate gene associated with the aspartate uptake trait. When expressed in yeast, OsLHT1 supported cell growth on a broad spectrum of amino acids, and effectively transported aspartate, asparagine and glutamate. OsLHT1 is localized throughout the rice root, including root hairs, epidermis, cortex and stele, and to the leaf vasculature. Knockout of OsLHT1 in japonica resulted in reduced root uptake of amino acids. Furthermore, in 15N‐amino acid‐fed mutants versus wild‐type, a higher percentage of 15N remained in roots instead of being allocated to the shoot. 15N‐ammonium uptake and subsequently the delivery of root‐synthesized amino acids to Oslht1 shoots were also significantly decreased, which was accompanied by reduced shoot growth. These results together provide evidence that OsLHT1 functions in both root uptake and root to shoot allocation of a broad spectrum of amino acids in rice.  相似文献   

9.
Summary Studies were conducted to examine the importance of nitrogen storage to seasonal aboveground growth in the alpine herb Bistorta bistortoides. Stored reserves accounted for 60% of the total nitrogen allocated to the shoot during the growing season. The stored nitrogen was equally partitioned between preformed buds of the shoot and the roots/rhizome. Reliance on stored N was similar in populations of a 105-day growing season site and of a 75-day growing season site. Contrary to our initial hypothesis, stored nitrogen reserves were not used to extend the growing season of this species into the late-spring when soils are still cold, and saturated with snow-melt water. The time at which stored nitrogen was used to initiate shoot growth coincided with the time of root initiation, rapid soil warming, and near maximum soil concentrations of NO inf3 sup– and NH inf4 sup+ . Thus, nitrogen demand and soil nitrogen supply were both high at the same time. The importance of nitrogen storage in this species appeared to be in satisfying the high demand of simultaneous vegetative and reproductive growth during the early-growing season after soils thawed. The initiation of rapid leaf and inflorescence growth occurred in mid-June in both sites. The maximum pool size of shoot nitrogen (maximum nitrogen demand) occurred only 12 days later in the long season site, and 28 days later in the short season site. The early-season utilization of nitrogen stores allows plants of this species to initiate reproductive allocation at the same time vegetative tissues are exhibiting maximal growth rates. By releasing vegetative and reproductive growth from competition for nitrogen, seeds could mature early in the alpine growing season, before the frost probability sharply increases in mid-August.  相似文献   

10.
In order to investigate the effects of soil microorganisms on biochemical and physiological response of plants to PAHs, PAH-degrading bacteria (Acinetobacter sp.) and/or arbuscular mycorrhizal fungus (Glomus mosseae) were inoculated with ryegrass (Lolium multiflorum) under four different concentrations of phenanthrene and pyrene (0, 50 + 50, 100 + 100, 200 + 200 mg kg–1) in soils. Acinetobacter sp. played limited roles on the growth of ryegrass, chlorophyll content, water soluble carbohydrate content, malondialdehyde (MDA) content, activities of superoxide dismutase (SOD) and peroxidase (POD) in shoot. By contrast, G. mosseae significantly (P < 0.01) increased ryegrass growth, partially by improving the photosynthetic activity through increasing the chlorophyll content in shoot. G. mosseae also significantly decreased MDA content in shoot. However, G. mosseae significantly increased SOD activity in shoot, which seemed to be resulted from significantly higher pyrene concentrations in shoot. The present study suggested that AM fungi could reduce the damage of cell membranes caused by free radicals, which may be one of the mechanisms involved in mycorrhizal alleviation of plant stress under PAHs. The present study indicated that the dual inoculation was superior to single inoculation in remediating PAHs contaminated soils.

Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.  相似文献   


11.
The effects of liming and inoculation with the arbuscular mycorrhizal fungus, Glomus intraradices Schenck and Smith on the uptake of phosphate (P) by maize (Zea mays L.) and soybean (Glycine max [L.] Merr.) and on depletion of inorganic phosphate fractions in rhizosphere soil (Al-P, Fe-P, and Ca-P) were studied in flat plastic containers using two acid soils, an Oxisol and an Ultisol, from Indonesia. The bulk soil pH was adjusted in both soils to 4.7, 5.6, and 6.4 by liming with different amounts of CaCO3.In both soils, liming increased shoot dry weight, total root length, and mycorrhizal colonization of roots in the two plant species. Mycorrhizal inoculation significantly increased root dry weight in some cases, but much more markedly increased shoot dry weight and P concentration in shoot and roots, and also the calculated P uptake per unit root length. In the rhizosphere soil of mycorrhizal and non-mycorrhizal plants, the depletion of Al-P, Fe-P, and Ca-P depended in some cases on the soil pH. At all pH levels, the extent of P depletion in the rhizosphere soil was greater in mycorrhizal than in non-mycorrhizal plants. Despite these quantitative differences in exploitation of soil P, mycorrhizal roots used the same inorganic P sources as non-mycorrhizal roots. These results do not suggest that mycorrhizal roots have specific properties for P solubilization. Rather, the efficient P uptake from soil solution by the roots determines the effectiveness of the use of the different soil P sources. The results indicate also that both liming and mycorrhizal colonization are important for enhancing P uptake and plant growth in tropical acid soils.  相似文献   

12.
Maize seedlings were grown for 10 to 20 days in either nutrient solution or in soils with or without fertilizer supply. Air temperature was kept uniform for all treatments, while root zone temperature (RZT) was varied between 12 and 24°C. In some treatments the basal part of the shoot (with apical shoot meristem and zone of leaf elongation) was lifted up to separate the indirect effects of root zone temperature on shoot growth from the direct effects of temperature on the shoot meristem.Shoot and root growth were decreased by low RZT to a similar extent irrespective of the growth medium (i.e. nutrient solution, fertilized or unfertilized soil). In all culture media Ca concentration was similar or even higher in plants grown at 12 as compared to 24°. At lower RZT concentrations of N, P and K in the shoot dry matter decreased in unfertilized soil, whereas in nutrient solution and fertilized soil only the K concentration decreased.When direct temperature effects on the shoot meristem were reduced by lifting the basal part of the shoot above the temperature-controlled root zone, shoot growth at low RZT was significantly increased in nutrient solution and fertilized soil, but not in unfertilized soil. In fertilized soil and nutrient solution at low RZT the uptake of K increased to a similar extent as plant growth, and thus shoot K concentration was not reduced by increasing shoot growth rates. In contrast, uptake of N and P was not increased, resulting in significantly decreased shoot concentrations.It is concluded that shoot growth at suboptimal RZT was limited both by a direct temperature effect on shoot activity and by a reduced nutrient supply through the roots. Nutrient concentrations in the shoot tissue at low RZT were not only influenced by availability in the substrate and dilution by growth, but also by the internal demand for growth.  相似文献   

13.
The combined use of plants and bacteria is a promising approach for the remediation of polluted soil. In the current study, the potential of bacterial endophytes in partnership with Leptochloa fusca (L.) Kunth was evaluated for the remediation of uranium (U)- and lead (Pb)-contaminated soil. L. fusca was vegetated in contaminated soil and inoculated with three different endophytic bacterial strains, Pantoea stewartii ASI11, Enterobacter sp. HU38, and Microbacterium arborescens HU33, individually as well as in combination. The results showed that the L. fusca can grow in the contaminated soil. Bacterial inoculation improved plant growth and phytoremediation capacity: this manifested in the form of a 22–51% increase in root length, 25–62% increase in shoot height, 10–21% increase in chlorophyll content, and 17–59% more plant biomass in U- and Pb-contaminated soils as compared to plants without bacterial inoculation. Although L. fusca plants showed potential to accumulate U and Pb in their root and shoot on their own, bacterial consortia further enhanced metal uptake capacity by 53–88% for U and 58–97% for Pb. Our results indicate that the combination of L. fusca and endophytic bacterial consortia can effectively be used for the phytostabilization of both U- and Pb-contaminated soils.  相似文献   

14.

An efficient plant regeneration protocol was developed for Basilicum polystachyon (L.) Moench using shoot tip from in vitro germinated plant. Both shoot multiplication and root induction were initiated from shoot tip explants in Murashige and Skoog’s (MS) basal medium supplemented with N6-benzylaminopurine (BAP) and 6-furfurylaminopurine (Kin) combination with 1-naphthaleneacetic acid (NAA) and without any plant growth regulator. Among the different concentrations and combinations of growth regulators, the highest number of shoots per explants was induced on 13.32 μM BAP with 0.53 μM NAA. It was also found that the multiplication of shoots along with roots induced in MS medium without any plant growth regulators. The in vitro grown plants were successfully hardened and acclimatized in the field with a 99% survival rate. The results obtained from HPLC analysis established the presence of a significant amount of endogenous auxin, viz. indole-3-acetic acid acid and indole-3-butyric acid in the shoot and root tips of B. polystachyon. This is the first report of a successful multiplication of B. polystachyon in absence of plant growth regulators and the presence of an abundant quantity of endogenous auxin in root and shoot tips using Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) coupled with ultraviolet–visible (UV–Vis) detector.

  相似文献   

15.
In vitro culture of eight Ficus benjamina clones was initiated from shoot tips four times from January to June 1988. Shoot formation and growth in vitro were followed during eight subsequent subcultures, whereafter the developed shoot clusters were rooted in vitro. Significant differences among clones in proliferation rate and time to emergenece of first root in vitro were observed. A superior clone Cleo, previously selected for fast growth as a potted plant, also proved to have the highest proliferation rate and the shortest time until emergence of first root in vitro. The proliferation rate was nearly stabilized after five subcultures. A negative correlation between proliferation rate and time to emergence of first root in vitro was found.Abbreviations C clone - S subculture - SP(C) stock plant within clone - T time of initiation  相似文献   

16.
In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg?1), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.  相似文献   

17.
Activities at root-soil interface determine the solubility and uptake of metals by plants. Metal accumulation in plant species (Imperata cylindrical, Cynodon dactylon, Eleucine indica, Gomphrena celosoides, Sporobolus pyramidalis, Chromolaena odorata and Rhynchospora corymbosa) growing on Pb contaminated site as influenced by variations in physico-chemical characteristics, dissolved organic matter (DOM), Pb fractionation and different functional groups (using Fourier Transmittance Infra-red) of rhizospheric and non-rhizospheric soils was assessed. The electrical conductivity (2660–5520 µs) and Pb concentrations (51390.0–64080.0 mg/kg) were more in non-rhizospheric than rhizospheric soils having 276 µs to 3160 µs EC and 3289.0 to 44850.0 mg/kg Pb. More nutrients, DOM and carbohydrates functional groups (C-O; 1100 -1000 and O-H; 3700–3600) were found in rhizospheric compared to non-rhizospheric soils. The pH was slightly acidic (5.0–5.54) and E. indica with the lowest pH (5.0) accumulated highest Pb concentrations in shoot (8030 mg/kg) and root (16380 mg/kg) while C. odorata with highest values of pH, P, Ca and Mg in rhizospheric soil accumulated the least (root; 331.6 and shoot: 209.0 mg/kg). Pb was more in organic and residual fractions of rhizospheric and non-rhizospheric soils respectively. Reduction in pH, EC coupled with nutrients and DOM availability increased Pb uptake by plants.  相似文献   

18.
A pot experiment was conducted to study the effect of single and co-inoculation of Bacillus mycoides and Micrococcus roseus strains, indigenous to heavy metal (HM)–contaminated soils, on the growth and essential-nutrient and Cd uptake of maize in a soil polluted with 100 and 200 mg Cd kg?1. Increasing Cd levels significantly decreased shoot and root dry weights, and shoot P, Fe, Zn, and Mn uptake. All bacterial treatments significantly increased biomass and shoot nutrient uptake of plant compared with control in the soil polluted with Cd. Inoculation of plants with B. mycoides and consortium of two bacteria significantly increased, whereas M. roseus significantly decreased, shoot and root Cd uptake, and Cd transfer and translocation factors compared with control in Cd-polluted conditions. The results showed that B. mycoides and consortium of two bacteria had an effective role in phytoextraction and M. roseus was the most effective treatment in phytostabilization of Cd.  相似文献   

19.
Tang  C.  Buirchell  B. J.  Longnecker  N. E.  Robson  A. D. 《Plant and Soil》1993,155(1):513-516
Commercial lupins grow poorly on alkaline and neutral fine-textured soils. Genotypic variation exists among lupins. The present study compared the growth of 13 lupin genotypes, including introduced cultivars and wild types, in an alkaline loamy soil and an acid loamy soil.Plants grown in the alkaline and acid soils did not show obvious symptoms of iron deficiency at any stage. There was however a large variation of shoot fresh weight among genotypes in response to the alkaline soil with L. atlanticus and L. pilosus being more tolerant than L. luteus, L. cosentinii, L. albus and L. angustifolius. Some variation also existed among genotypes of L. angustifolius. In addition, root growth was retarded on the alkaline soil except for L. atlanticus, L. pilosus P20955 and L. albus Kiev mutant. In the alkaline soil, root growth at week 2 correlated well with the shoot fresh weight at week 12. The results suggest that early root elongation may be useful for screening tolerant genotypes for alkaline soils.  相似文献   

20.
Woody plant seedling establishment is constrained by herbivory in many semi‐arid savannas. We clipped shoots and cotyledons of three woody species 5‐day (=‘early’) or 28‐day (= ‘late’) post‐emergence to simulate herbivory. Seedlings had shoot apex, one or two cotyledon(s) removed, or were retained intact. Survival rates were ≥80%, ≥40% and ≥20% for Acacia nilotica, Acacia nigrescens and Faidherbia albida respectively. F. albida mobilized stored cotyledon reserves faster and consequently shed the cotyledons earlier than the two Acacia species. Cotyledons were shed off as late as 70 days post‐emergence with 5‐day shedding earlier than 28‐day and cotyledon life‐span decreasing with intensity of defoliation. Shoot apex removal 28‐day resulted in higher compensatory growth than 5‐day in all three species. Cotyledon removal had no effect on shoot length, while shoot apex removal reduced shoot length. In F. albida root growth was stimulated by shoot apex removal. We conclude that potential tolerance to herbivory in terms of seedling survival was of the order A. nilotica > A. nigrescens > F. albida, timing of shoot apex and cotyledon removal influenced seedling growth in terms of biomass and that shoot apex removal stimulated compensatory growth which is critical to seedling survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号