首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang, Z.-H., Chen, L., Saito, S., Kanagawa, O., and Sendo, F. 2000. Possible modulation by male sex hormone of Th1/Th2 function in protection against Plasmodium chabaudi chabaudi AS infection in mice. Experimental Parasitology 96, 121-129. We examined the mortality, survival time, and parasitemia in interferon gamma receptor (IFN-gamma R)-deficient (IFN-gamma R(-/-)) and IL-4-deficient (IL-4(-/-)) mice infected with Plasmodium chabaudi AS and compared them with the wild type counterparts (IFN-gamma R(+/+) and IL-4(+/+), respectively). (1) Mortality was higher and survival time was shorter in males of both IFN-gamma R(-/-) and IL-4(-/-) mice infected with P. chabaudi AS, compared with their wild type counterparts, whereas such a difference was not observed in female mice. (2) These differences between males and females were not observed when male mice were castrated; however, female castration had no effect on the data. (3) The rate of parasitemia in both male and female IFN-gamma R(-/-) and IL-4(-/-) mice was higher at some points during the observation than in the wild type counterparts. (4) These results on susceptibility vs resistance to P. chabaudi AS infection can be explained partially by the levels of expression of Th1/Th2 cytokine and chemokine mRNAs in the spleen cells of the infected mice. These results suggest that male sex hormones modulate the function of Th1/Th2 cells and that these T cells counteract the activity of these hormones in protection against P. chabaudi AS infection in mice.  相似文献   

2.
3.
In this study, we investigated the role of endogenous IL-12 in protective immunity against blood-stage P. chabaudi AS malaria using IL-12 p40 gene knockout (KO) and wild-type (WT) C57BL/6 mice. Following infection, KO mice developed significantly higher levels of primary parasitemia than WT mice and were unable to rapidly resolve primary infection and control challenge infection. Infected KO mice had severely impaired IFN-gamma production in vivo and in vitro by NK cells and splenocytes compared with WT mice. Production of TNF-alpha and IL-4 was not compromised in infected KO mice. KO mice produced significantly lower levels of Th1-dependent IgG2a and IgG3 but a higher level of Th2-dependent IgG1 than WT mice during primary and challenge infections. Treatment of KO mice with murine rIL-12 during the early stage of primary infection corrected the altered IgG2a, IgG3, and IgG1 responses and restored the ability to rapidly resolve primary and control challenge infections. Transfer of immune serum from WT mice to P. chabaudi AS-infected susceptible A/J mice completely protected the recipients, whereas immune serum from KO mice did not, as evidenced by high levels of parasitemia and 100% mortality in recipient mice. Furthermore, depletion of IgG2a from WT immune serum significantly reduced the protective effect of the serum while IgG1 depletion had no significant effect. Taken together, these results demonstrate the protective role of a Th1-immune response during both acute and chronic phases of blood-stage malaria and extend the immunoregulatory role of IL-12 to Ab-mediated immunity against Plasmodium parasites.  相似文献   

4.
The BCL-6 gene negatively regulates Th2 responses as shown by the finding that BCL-6-deficient (BCL-6-/-) mice develop a lethal Th2-type inflammatory disease. The response of inbred mouse strains to infection with Leishmania major is under genetic control; BALB/c mice are susceptible and develop a progressive parasite burden, whereas most other common laboratory strains of mice are resistant to infection. We found that BCL-6-/- mice on a resistant genetic background (C57BL/6 x 129 intercrossed mice) were highly susceptible to L. major infection; they resembled BALB/c mice in terms of lesion size, parasite load, and the production of Th2 cytokines. BCL-6-/-IL-4-/- double-mutant mice were also susceptible to L. major infection and produced 10-fold higher levels of the Th2 cytokine IL-13 than IL-4-/- littermate controls. By contrast, BCL-6-/-STAT6-/- double-mutant mice were resistant to L. major infection despite also producing elevated levels of IL-13. These results show that STAT6 is required for susceptibility to L. major infection and suggest that IL-13 signaling through STAT6 may contribute to a nonhealing, exacerbated L. major infection.  相似文献   

5.
Different functions have been attributed to natural regulatory CD4+CD25+FOXP+ (Treg) cells during malaria infection. Herein, we assessed the role for Treg cells during infections with lethal (DS) and non-lethal (DK) Plasmodium chabaudi adami parasites, comparing the levels of parasitemia, inflammation and anaemia. Independent of parasite virulence, the population of splenic Treg cells expanded during infection, and the absolute numbers of activated CD69+ Treg cells were higher in DS-infected mice. In vivo depletion of CD25+ T cells, which eliminated 80% of CD4+FOXP3+CD25+ T cells and 60-70% of CD4+FOXP3+ T cells, significantly decreased the number of CD69+ Treg cells in mice with lethal malaria. As a result, higher parasite burden and morbidity were measured in the latter, whereas the kinetics of infection with non-lethal parasites remained unaffected. In the absence of Treg cells, parasite-specific IFN-gamma responses by CD4+ T cells increased significantly, both in mice with lethal and non-lethal infections, whereas IL-2 production was only stimulated in mice with non-lethal malaria. Following the depletion of CD25+ T cells, the production of IL-10 by CD90(-) cells was also enhanced in infected mice. Interestingly, a potent induction of TNF-alpha and IFN-gamma production by CD4+ and CD90(-) lymphocytes was measured in DS-infected mice, which also suffered severe anaemia earlier than non-depleted infected controls. Taken together, our data suggest that the expansion and activation of natural Treg cells represent a counter-regulatory response to the overwhelming inflammation associated with lethal P.c. adami. This response to infection involves TH1 lymphocytes as well as cells from the innate immune system.  相似文献   

6.
Susceptible A/J and more resistant C57BL/6J mice were infected with Plasmodium chabaudi chabaudi 54X, P.c. chabaudi AS and Plasmodium chabaudi adami 408XZ. As expected, most C57BL/6J mice survived the infections with the different isolates. But in contrast to previous observations, not all A/J mice succumbed to infection: just over 50% of A/J mice survived infections with P.c. chabaudi 54X, while 80% survived P.c. chabaudi AS. The more virulent parasite, P.c. adami 408XZ, was able to kill all A/J mice and 20% of C57BL/6J mice after an intravenous infection with 10(5) pRBC. A detailed study of four parameters of pathology (body weight, body temperature, blood glucose and RBC counts) in both mouse strains after a P.c. adami 408XZ infection showed similar patterns to those previously reported after infection with P.c. chabaudi AS. These data suggest that environmental factors as well as parasite polymorphisms might influence the severity of malaria between susceptible and resistant mice.  相似文献   

7.
Infection with the malaria parasite, Plasmodium, is characterized by excessive inflammation. The establishment of a precise balance between the pro- and anti-inflammatory responses is critical to guarantee control of the parasite and survival of the host. IL-10, a key regulatory cytokine produced by many cells of the immune system, has been shown to protect mice against pathology during acute Plasmodium0 chabaudi chabaudi AS model of malaria. However, the critical cellular source of IL-10 is still unknown. In this article, we demonstrate that T cell-derived IL-10 is necessary for the control of pathology during acute malaria, as mice bearing specific deletion of Il10 in T cells fully reproduce the phenotype observed in Il10(-)(/)(-) mice, with significant weight loss, decline in temperature, and increased mortality. Furthermore, we show that IFN-γ(+) Th1 cells are the main producers of IL-10 throughout acute infection, expressing high levels of CD44 and ICOS, and low levels of CD127. Although Foxp3(+) regulatory CD4(+) T cells produce IL-10 during infection, highly activated IFN-γ(+) Th1 cells were shown to be the essential and sufficient source of IL-10 to guarantee protection against severe immune-mediated pathology. Finally, in this model of malaria, we demonstrate that the generation of protective IL10(+)IFN-γ(+) Th1 cells is dependent on IL-27 signaling and independent of IL-21.  相似文献   

8.
IL-33, a potent inducer of adaptive immunity to intestinal nematodes   总被引:2,自引:0,他引:2  
IL-33 (IL-1F11) binds ST2 (IL-1R4), both of which are associated with optimal CD4(+) Th2 polarization. Exogenous IL-33 drives induction of Th2-associated cytokines and associated pathological changes within the gut mucosa. Th2 polarization is also a prerequisite to expulsion of the intestinal-dwelling nematode Trichuris muris. In this study, we demonstrate that IL-33 mRNA is expressed early during parasite infection and susceptible mice can be induced to expel the parasite by a regime of exogenous IL-33 administration. IL-33 prevents an inappropriate parasite-specific Th1-polarized response and induces IL-4, IL-9, and IL-13. This redirection requires the presence of T cells and must occur at the initiation of the response to the pathogen. Interestingly, exogenous IL-33 also induced thymic stromal lymphopoietin mRNA within the infected caecum, an epithelial cell-restricted cytokine essential for the generation of Th2-driven parasite immunity. IL-33 also acts independently of T cells, altering intestinal pathology in chronically infected SCID mice, leading to an increased crypt length and intestinal epithelial cell proliferation, but reducing goblet cell hyperplasia. Thus, the ability of IL-33 to induce Th2 responses has functional relevance in the context of intestinal helminth infection, particularly during the initiation of the response.  相似文献   

9.
To elucidate the pathogenesis of Helicobacter pylori-associated gastritis, we studied immune responses of C57BL/6J wild-type (WT), SCID, and gene deficient (IFN-gamma-/- and IL-4-/-) mice following infection with a pathogenic isolate of H. pylori (SPM326). During early infection in WT mice, mononuclear and polymorphonuclear cells accumulated in the gastric lamina propria, and the numbers of cells in the inflamed mucosa expressing IFN-gamma, but not IL-4, mRNA rose significantly (p < 0.005), consistent with a local Th1 response. Splenic T cells from the same infected WT mice produced high levels of IFN-gamma, no detectable IL-4, and low amounts of IL-10 following in vitro H. pylori urease stimulation, reflecting a systemic Th1 response. Infected C57BL/6J SCID mice did not develop gastric inflammation despite colonization by many bacteria. Infected C57BL/10J and BALB/c mice also did not develop gastric inflammation and displayed a mixed Th1/Th2 splenic cytokine profile. These data imply a major role for the Th1 cytokine IFN-gamma in H. pylori-associated gastric inflammation in C57BL/6J mice. Compared with WT animals, infected IL-4-/- animals had more severe gastritis and higher levels of IFN-gamma production by urease-stimulated splenocytes (p < 0.01), whereas IFN-gamma-/- mice exhibited no gastric inflammation and higher levels of IL-4 production by stimulated splenocytes. These findings establish C57BL/6J mice as an important model for H. pylori infection and demonstrate that up-regulated production of IFN-gamma, in the absence of the opposing effects of IL-4 (and possibly IL-10), plays a pivotal role in promoting H. pylori-induced mucosal inflammation.  相似文献   

10.
Malaria is a life-threatening re-emerging disease, yet it is still not clear how bloodstage malarial parasites are killed. Nitric oxide (NO), which has potent anti-microbial activity, may represent an important killing mechanism. The production of NO during descending Plasmodium chabaudi parasitemia, a period when parasites are killed by the immune response, supports this concept. However, NOS20/0 and NOS30/0 mice as well as mice treated with NO synthase 2 (NOS2) inhibitors do not develop exacerbated malaria, indicating that NO production is not necessary for the suppression of P. chabaudi parasitemia. It is possible due to the plasticity in the immune response during malaria that Ab-mediated immunity is enhanced in the absence of NO, thereby explaining the lack of exacerbated malaria in NOS-deficient mice even though NO may function in protection. However, NOS2- and B cell-deficient mice, which cannot use Ab-mediated immunity, suppress their parasitemia with a similar time course as B cell-deficient controls. C57BL/6 mice treated with Propionibacterium acnes to elicit high levels of macrophage-derived NO have a similar time course of P. chabaudi parasitemia as P. acnes-treated NOS20/0 mice, which do not produce NO; this indicates that NO is not sufficient for parasite killing. Collectively, these results indicate that NO is not necessary or sufficient to resolve P. chabaudi malaria.  相似文献   

11.
After the onset of parasite egg deposition, mice infected with the helminth Schistosoma mansoni mount strong Th2 cytokine responses in the absence of significant Th1 cytokine synthesis. To examine the basis of this immunoregulatory state, spleen or lymph node cells from schistosome-infected mice were stimulated with parasite-specific Ag and the supernatants tested for their capacity to suppress IFN-gamma synthesis by a Th1 cell line. Strong inhibition was observed that was neutralized by a mAb against IL-10, a cytokine previously shown to down-regulate Th1 cytokine synthesis. By means of ELISA measurements the production of IL-10 in schistosome infection was confirmed and shown to depend on CD4+ T cells. IL-10 synthesis stimulated by either mitogen or Ag was observed only at those stages of infection when Th2 response induction and Th1 cytokine down-regulation also occurred and was not detected in mice vaccinated with attenuated parasites. Moreover, the addition of the neutralizing anti-IL-10 mAb to Ag-stimulated spleen cell cultures from infected mice caused a dramatic augmentation in IFN-gamma synthesis. These findings suggest that IL-10 is responsible for the down-regulation of Th1 responses observed in schistosome infections, a phenomenon that may enable the parasite to escape potentially harmful cell-mediated responses.  相似文献   

12.
We examined the effect that low parasitemias have on the immune response of CB6F1 mice infected with Plasmodium chabaudi chabaudi AS. Ascending parasitemias were stopped by chloroquine treatment when they were between 1.6 and 9.4%. Mice that suffered low parasitemias developed good immunity to homologous reinfection but, contrary to what happened in mice that suffered full parasitemias, they did not develop immunity to heterologous reinfection with Plasmodium yoelii 17XL. Total IgG antiparasite antibody responses were similar in mice that suffered low or full parasitemia, both in primary infection and after reinfection. At the level of isotypes, IgM, IgG1, IgG2b, and IgG3 responses were similar in mice that suffered low or full parasitemias, but after reinfection, mice that suffered low parasitemias responded with higher levels of IgG2a than mice that suffered full parasitemias. Mice that suffered low parasitemias did not have splenomegaly but their immunity to homologous reinfection was diminished after splenectomy in a manner similar to that of splenectomized mice that suffered full parasitemia. CB6F1 mice can develop homologous immunity even if exposed to low parasitemias but cannot develop heterologous immunity unless exposed to high parasite loads.  相似文献   

13.
Chagas disease, caused by Trypanosoma cruzi (Tc), is an important cause of heart disease. Resistance to Tc infection is multifactorial and associated with Th1 response. IL-18 plays an important role in regulation of IFN-γ production/development of Th1 response. However, the role of IL-18 in the setting of Tc infection remains unclear. Therefore, we investigated the role of IL-18 in the modulation of immune response and myocarditis in Tc infection. C57BL/6 and IL-18 KO mice were infected with Tc (Y or Colombian strain) and parasitemia, immune response and pathology were evaluated. Y strain infection of IL-18 KO did not alter any parameters when compared with C57BL/6 mice. However, during the acute phase (20 and 40 days post infection-dpi), Colombian strain infected-IL-18 KO mice displayed higher serum levels of IL-12 and IFN-γ, respectively, and at the chronic phase (100 dpi) an increase in splenic IFN-γ-producing CD4+ and CD8+ T memory cells. There was an IL-10, FOXP3 and CD4+CD25+ cells reduction during acute infection in spleen. Additionally, there was a significant reduction in leukocyte infiltration and parasite load in myocardium of chronically infected IL-18 KO mice. Collectively, these data indicate that IL-18 contributes to the pathogenesis of Tc-induced myocarditis when infected with Colombian but not Y strain. These observations also underscore that parasite and host strain differences are important in evaluation of experimental Tc infection pathogenesis.  相似文献   

14.
Functional roles of interleukin (IL-)6 in T cell response were investigated. Mice deficient in IL-6 and wild mice were immunized with antigens (myelin oligodendrocyte glycoprotein or methylated BSA) and production of IL-4 and interferon (IFN)-gamma by regional lymph nodes was measured. IL-6 deficiency led to an enhancement of IL-4 and an inhibition of IFN-gamma production. Moreover, polyclonal stimulation of spleen T cells from unimmunized IL-6-deficient mice with anti-CD3 plus anti-CD28 antibodies (Abs) demonstrated an enhancement of T helper (Th)(2)responses. The presence of IL-6, however, augmented IL-4 production but it inhibited IFN-gamma expression by spleen T cells in response to polyclonal stimulation and by antigen-primed spleen T cells in response to re-challenge with the antigen. In contrast, the induction of spleen CD4-positive T cells into Th(2)cells in vitro by the anti-CD3 plus IL-4 was completely suppressed by exogenously added IL-6, whereas Th(1)differentiation of T cells by the anti-CD3 plus IL-12 was not inhibited by the presence of IL-6. Thus, these results indicate that IL-6 physiologically could modulate qualitative T cell response and suggest that it augments Th(1)responses partly through its inhibitory capability of IL-4-induced Th(2)differentiation of naive T cells.  相似文献   

15.
In previous studies the dynamics of IL-2 production by splenic cells of Schistosoma mansoni infected mice was correlated with the intensity of hepatic granulomatous inflammation. To extend those observations, the present studies examined the role of IL-4 on the immune responsiveness of infected mice. The dynamics of IL-4 production by soluble egg Ag-stimulated splenic cells was similar to that of IL-2: minimal levels at the pre-oviposition or early worm egg deposition stages (4 to 6 wk) peak production coincident with maximal granulomatous response (8 wk) followed by a concurrent decline at the chronic stage (18 to 20 wk) in both parameters. Addition of murine rIL-4 to splenocyte cultures of acutely or chronically infected mice did not significantly enhance the soluble egg Ag-elicited proliferative response. Daily injections of rIL-4 (10 to 1000 U) given for 14 days to groups of mice with acute infection, at the high dose-enhanced IL-2, but not IL-4, production. Similar treatment given to chronically infected mice did not augment diminished lymphokine production. Chronically infected mice treated with 10 to 1000 U of rIL-4 showed significantly enhanced liver granulomatous responses compared with untreated animals and the augmented granulomas contained more enlarged macrophages and connective tissue matrix. Repeated injections of anti-IL-4 mAb (11B11) given to acutely infected mice significantly suppressed splenic cell proliferation, IL-2 and IL-4 production, and hepatic granulomatous inflammation. Similar treatment given to chronically infected mice also diminished the down-modulated granulomatous response. These data demonstrate that IL-4 plays an important role in the egg-directed granulomatous response and participates in the regulation of Ag-specific lymphoproliferation, and IL-2 and IL-4 production during the course of the infection.  相似文献   

16.
The role of IL-6 in Th2 cell differentiation and response development after the injection of eggs from Schistosoma mansoni was investigated using wild-type (WT) and IL-6-/- mice. IL-6 was induced in the lymph nodes (LN) of WT mice within 24 h of egg injection, and IL-4 production by WT LN cells and CD4 T cells isolated 24 h after egg injection and stimulated in vitro was observed. In the absence of IL-6, this early production of IL-4 by LN cells and purified CD4 T cells was not abolished; although the level of IL-4 produced by IL-6-/- LN cells was similar to WT, IL-4 production by purified IL-6-/- CD4 T cells was reduced compared with WT. Despite the difference in CD4 T cell production of IL-4, the development of egg-specific Th2 cells 7 days after egg injection was not affected by the absence of IL-6. Nevertheless, Ab production was impaired and the in vitro proliferative response of whole LN cell populations, CD4 and CD8 T cells, and B cells from IL-6-/- mice was poor compared with WT. The proliferative defect in the IL-6-/- cells correlated with decreased IL-2R expression, and addition of exogenous IL-6 enhanced IL-2R expression as well as proliferation of LN cells from IL-6-/- mice. These studies demonstrate that Th2 differentiation and response development in vivo is not dependent on IL-6, but that Th-dependent and independent B cell responses are. Our results also emphasize the importance of IL-6 for lymphoproliferation, possibly through induction of IL-2R expression.  相似文献   

17.
The murine Litomosoides sigmodontis model of filarial infection provides the opportunity to elucidate the immunological mechanisms that determine whether these nematode parasites can establish a successful infection or are rejected by the mammalian host. BALB/c mice are fully susceptible to L. sigmodontis infection and can develop patent infection, with the microfilarial stage circulating in the bloodstream. In contrast, mice on the C57BL background are largely resistant to the infection and never produce a patent infection. In this study, we used IL-4 deficient mice on the C57BL/6 background to address the role of IL-4 in the development of L. sigmodontis parasites in a resistant host. Two months after infection, adult worm recovery and the percentage of microfilaraemic mice in infected IL-4 deficient mice were comparable with those of the susceptible BALB/c mice while, as expected, healthy adults were not recovered from wild type C57BL/6 mice. The cytokine and antibody responses reveal that despite similar parasitology the two susceptible strains (BALB/c and IL-4 deficient C57BL/6) have markedly different immune responses: wild type BALB/c mice exhibit a strong Th2 immune response and the IL-4 deficient C57BL/6 mice exhibit a Th1 response. We also excluded a role for antibodies in resistance through infection of B-cell deficient C57BL/6 mice. Our data suggest that the mechanisms that determine parasite clearance in a resistant/non-permissive host are Th2 dependent but that in a susceptible/permissive host, the parasite can develop in the face of a Th2 dominated response.  相似文献   

18.
This study analyzed the mRNA expression of tumor necrosis factor (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6) in mice experimentally infected with T. gondii undergoing honey treatment. Thirty male mice were divided in groups: pre-treatment/infected (1), infected/non-treated (2), infected/treated (3), non-infected/treated (4) and control (5). Honey was applied for groups 1, 3, 4 by gavage and the mice in group 1–3 were infected by T. gondii tissue cysts. The parasite load and the level of mRNA expression of the aforementioned cytokines in the brains of mice were assessed by qPCR. The mean number of T. gondii tachyzoite in 1 mg brain tissue was 32, 73 and 59 in groups one, two and three, respectively. The mRNA expression of TNF-α increased in group 1, 2 and 3, about 49.1%, 307.3% and 63.2%, respectively but it was down-regulated by 53% in group 4. The mRNA expression of IL-1β and IL-6 was also up-regulated in all groups except group 2. The mRNA level of TNF-α was reduced by 2.7-fold and 1.18-fold in pre-treated/infected (group 1) and infected/treated (group 3) compared with infected/non-treated (group 2). The mRNA level of IL-1β and IL-6 were increased in these groups. The current study demonstrated that honey can stimulate or suppress the mRNA expression of some pro-inflammatory cytokines in mice brains. Furthermore, honey suppresses the TNF-α mRNA expression in the presence of T. gondii infection but it stimulates the IL-1β and IL-6 mRNA expression. Treatment of the mice with honey reduces parasite multiplication in the brain.  相似文献   

19.
The role of the third component of complement (C3) during schistosome infection was investigated using mice deficient in C3. While no effect was observed 8 wk after infection on worm development or liver pathology, Ag-specific Th2-associated cytokine production (IL-13, IL-5, IL-6, and IL-10) was significantly reduced, and IFN-gamma production was enhanced in the absence of C3. IgG1 and IgE, but not IgG2a or IgM, Ab responses were also significantly impaired in infected C3(-/-) mice, suggesting that C3 may play a role in IL-4-mediated Th2 response enhancement during schistosome infection. Furthermore, C3-deficient mice could not effectively clear adult worms after praziquantel (PZQ) treatment and suffered increased morbidity due to the overproduction of proinflammatory mediators following drug administration. However, the ischemic liver damage that normally accompanies PZQ administration in infected wild-type mice was substantially reduced in treated C3-deficient mice, probably due to the absence of dead or dying worms in the livers of these animals. Together these results indicate that C3 enhances Th2 responses during schistosome infection, potentiates PZQ-mediated parasite clearance, and reduces chemotherapy-induced proinflammatory mediator production.  相似文献   

20.
Role of IL-6 in directing the initial immune response to schistosome eggs   总被引:5,自引:0,他引:5  
The eggs of Schistosoma mansoni are strong inducers of a Th2 response, and previous work has shown that Ag-specific IL-6 is produced within 24 h after the injection of eggs into mice. Investigations to determine the role of IL-6 in orchestrating the early response to schistosome eggs have revealed that IL-12 is rapidly produced in lymph node cell cultures from egg-injected mice. This "early" IL-12 primes for the production of IL-6 and IFN-gamma, for in IL-12-/- mice egg injection fails to stimulate increased production of either of these cytokines. Furthermore, IL-6 also up-regulates IL-10 production which, together with IL-6, negatively regulates IL-12 and IFN-gamma production. Finally, IL-10 down-regulates the production of its inducer, IL-6. These data indicate that the anti-inflammatory role of IL-6 may be effected through negative regulation of type 1 (IFN-gamma) and type 1-associated (IL-12) cytokines either directly (by IL-6) or indirectly (through the induction of IL-10) and suggest that one mechanism by which eggs may support the development of Th2 responses is through the negative regulation of the type 1 response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号