首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 380 毫秒
1.
剪切应力对毛细血管内皮细胞代谢的影响   总被引:3,自引:0,他引:3  
建立的平行平板流动腔装置适用于研究血管内皮细胞代谢对剪切流场的响应。将培养的人胚肾小球血管单层内皮细胞置于剪应力分别为5×10-5N/cm2,1×10-4N/cm2和1.5×10-4N/cm2的定常层流中剪切25小时,样品中的内皮素分泌量用放射免疫法测定。结果表明,剪应力水平对内皮细胞内皮素的代谢活动有显著影响。与静态培养对照,低水平的剪应力(5×10-5N/cm2、1×10-4N/cm2)促进内皮素的分泌,而较高水平的剪应力(1.5×10-4N/cm2)抑制内皮素的分泌;剪应力对内皮素累积含量的影响比之分泌速率更大  相似文献   

2.
内皮细胞代谢与剪切作用时间的相关性   总被引:5,自引:3,他引:2  
应用平行平板流动腔装置研究毛细血管内皮细胞内皮素(ET)代谢与剪切作用时间的相关关系。将培养的人胚肾小球血管单层内皮细胞置于剪应力分别为0,5×10^-5,1×10^-4和1.5×10^-4N/cm^2的定常层流中切作用25小时,样品的ET分泌量用放射免疫法测定,结果表明,剪切作用时间与内皮细胞ET的代谢活动有密切相关,ET分泌量高低不仅限决于剪应力大小,而且还取决于剪切作用时间长短,ET分泌量随  相似文献   

3.
细胞内外钙离子浓度对鲎腹神经感光器光适应的影响   总被引:4,自引:1,他引:3  
袁维佳 Stie.  H 《动物学研究》1998,19(5):367-373
用细胞内记录的方法研究了由微弱持续光刺激(6×10^6 ̄9×10^6光子/cm^2,10s引起鲎(Limlus polyphemus)腹神经光器膜电流的变化--光碰击。结果表明,在生理盐水(10mmol/LCa^2+)中光碰击的平均面积为(39.5±1.76)pC,微弱光适应(记录前2.5s加1次光闪,9×10^9光子/cm^2)使得光碰击的面积下降至(10.5±2.29)pC(n=4)。在低钙溶  相似文献   

4.
本文通过低强度He-Ne激光以能量密度分别为14.31J/cm^2(辐照5’)、28.62J/cm^2(辐照10)、57.24J/cm^2(辐照20)114.52J/cm^2(辐照40)燠夫体外周血后,检测其淋染色畸变率(CA),激光照射血样(能量密度由低到高)未照射血样CA分别平均为4.29‰、3.96‰、3.81‰、3.590‰、4.19‰、X^检测无显著差异,说明低强度的He-Ne激光辐照人  相似文献   

5.
以0.1mol/LNH4Cl溶液为介质,用2.5次微分伏安法测定了丙二醛,线性范围为1.0*10^-6至1.0*10^-3mol/L,检测限达1.0*10^-7mol/L。并测定了细胞培养液介质中新生SD大鼠室肌细胞样品的丙二醛。  相似文献   

6.
510.6nm激光照射对兔血管平滑肌细胞增殖的影响   总被引:2,自引:0,他引:2  
本文用510.6nm 波长激光以功率密度1、5、10 m W/cm 2 和能量密度2、4、6J/cm 2 照射体外培养的兔血管平滑肌细胞(SMC),通过3H- TdR掺入率和细胞生长曲线测定细胞增殖率。结果显示,上述激光照射量均能抑制细胞增殖率,其中以10m W/cm 2 组的作用最为显著  相似文献   

7.
用离体血管灌流试验验证冯元桢等关于血管内皮细胞的膜张应力逆血流方向轻加的理论分析。用0.12N/m^2剪应力剪切人脐静脉段内皮细胞20h后,两种不同长度离体血管的内皮素平均分泌速率无显著差异,但在分泌速率的曲线形态,特征方程和最大分泌速率,最小分泌速率及分泌速率变异系数上差异较大;ATⅡ的平均分泌速率差异彩显著,11cm处理比21cm处理高68%。  相似文献   

8.
在生理盐水中用持续的弱光(6*10^6-9*10^6个光子/cm^2)刺激鲎的腹神经光感受器细胞可得到二种类型的碰击,一种称谓“标准光碰击”或“C2碰击”,它有对称的形状,信号衰退的指0数常数大于0.01/毫秒。  相似文献   

9.
杜氏盐藻细胞质膜具的氧化NAD(P)H,还原Fe(CN)^3-6和O2的氧化还原系统。当Fe(CN)^3-6浓度为0.6mmol/L,氧化NADH的Km为96μmol/L,Vmax为159nmol10^-8cellsmin^-1,最适pH为8.5。TritonX-100可促进NADH和Fe(CN)^3-6的氧化还原活性。NADH能促进藻细胞的氧吸收,最适pH为8.5。在无外源电子供体存在时,细胞质  相似文献   

10.
给大白鼠侧脑室注射马桑内酯(Coriaria Lactone, CL)(175×10- 2m ol/L2μl)后可诱发癫痫,用NADPHd 组织化学方法观察大脑皮质及海马NOS阳性神经元的变化, 结果: 大脑皮质NOS阳性神经元数目逐渐增加, 至2h 达高峰, 与生理盐水组相比差异具有非常显著性意义(P< 001), 随着CL作用时间延长NOS反应由弱变强;海马区NOS阳性神经元2h 时才出现染色明显加深。对体外培养的大脑皮质及海马神经元用CL (25×10- 5m ol/L) 作用1/2h、1h、2h、4h 后NOS阳性神经元均未见明显增加。  相似文献   

11.
将培养的人胚肾小球血管单层内皮细胞置于剪应力分别为6.5dyn/cm^2和13.0dyn/cm^2的定常层流中剪切10小时,样品中的内皮素(ET)分泌量用放射免疫法测定。结果表明,剪切应力和剪切作用时间对内皮细胞内皮素的代谢均有显著的影响,其影响不是简单的线性增减,而呈较复杂的非线性特征,内皮素累积含量和分泌速率,随剪切时间的变化的关系可用Logistic方程来描述,获得了反映内皮素(ET)分泌规律的大量特征方程和特征数,为了解体内发生于血管壁的病理生理过程中内皮素分泌规律提供了实验数据。  相似文献   

12.
Wang G  Cai S  Deng X  Ouyang K  Xie G  Guidoin R 《Biorheology》2000,37(4):291-299
The shear-induced secretory response of endothelin-1 (ET-1) by human microvascular endothelial cells was studied using paired human glomerular microvascular endothelial cell (HGMEC) cultured monolayers exposed to steady-state laminar shear stress for up to 10 hours. The first cell monolayer was subjected to a shear stress of 0.65 N m-2 and the second, 1.3 N m-2. ET-1 secretion was determined by radioimmunoassay. Over 10 hours of shear, the total cumulative secretion of ET-1 was 237.4 pg/cm2 for the monolayer exposed to 1.3 N m-2 and 143.6 pg/cm2 for the monolayer exposed to 0.65 N m-2. The average ET-1 secretion rate was 20.90 +/- 2.15 and 12.45 +/- 1.05 pg/cm2.h at 0.65 N m-2 and 1.3 N m-2, respectively. The results showed that ET-1 secretion varied with the time of shear in a nonlinear fashion. Although the level of shear stress affected the absolute value of ET-1 cumulative secretion and secretion rate, the major secretion period for both monolayers occurred between 2.0 and 8.0 hours, with the peak secretion rate occurring at approximately 5 hours. Thus, the response of cultured human microvascular endothelial cells to shear stress differed from that of large vessel endothelial cell cultures in terms of ET-1 secretion. In addition to the level of shear stress, the time of shear was also an important determinant of ET-1 secretion. Consequently, the heterogeneity of vascular endothelial cells and the time of shear should both be considered in future research on the secretion of vascular endothelial cell cultures.  相似文献   

13.
用离体培养的牛肺动脉内皮细胞灌流实验研究内皮细胞单层长度与其血管紧张素II代谢的相关性。牛肺动脉单层内皮细胞暴露于剪应力为0.64N/m2 的剪切流中24h后 ,两种不同长度(10cm和6cm)单层内皮细胞的血管紧张素II的平均分泌率有比较显著差异 ,10cm处理的血管紧张素II平均分泌率 (8.61±0.28pg/cm2.h)比6cm处理 (6.14±0.12pg/cm2.h)高40 % ,10cm处理的最小分泌率 (7.55pg/cm2.h)较6cm处理 (5.75pg/cm2.h)高31 % ,10cm处理的最小分泌率出现的剪切时间点比6cm处理要早6个小时。表明牛肺动脉内皮细胞单层长度与其血管紧张素II代谢 (分泌率 )间有密切的相关关系 ,进而从细胞代谢角度间接证实血管内皮细胞膜张应力存在累积效应。  相似文献   

14.
Recent studies suggest that the temporal gradient of shear stress that is generated by blood flow plays an important role in the pathology of arteriosclerosis. We focused on the temporal gradient of shear stress and measured the permeability of albumin under steady or pulsatile shear stress conditions. Porcine aortic endothelial cells were seeded on a membrane filter and subjected to steady or pulsatile shear stress (1 Hz) at 1 Pa for 48 h, and the permeability of albumin was measured over time. The permeability increased gradually under steady flow but increased acutely under pulsatile shear stress. In particular, the maximum permeability of albumin differed under these conditions. The value was 4.2 × 10?5 cm/s at 18 h under pulsatile shear stress and 2.8 × 10?5 cm/s at 48 h under steady shear stress. The permeable route of albumin was examined using isoproterenol, which decreases junctional permeability. The increase in albumin permeability with pulsatile shear stress was decreased by isoproterenol. These results suggest that the increased permeability of albumin with pulsatile shear stress was related to trafficking through paracellular junctions. Thus, pulsation may promote a mechanotransduction process that differs from that of steady shear stress, and these pulsation effects likely play an important role in the permeability of macromolecules.  相似文献   

15.
Shear stress induced stimulation of mammalian cell metabolism   总被引:19,自引:0,他引:19  
A flow apparatus has been developed for the study of the metabolic response of anchorage-dependent cells to a wide range of steady and pulsatile shear stresses under well-controlled conditions. Human umbilical vein endothelial cell monolayers were subjected to steady shear stresses of up to 24 dynes/cm(2), and the production of prostacyclin was determined. The onset of flow led to a burst in prostacyclin production which decayed to a long term steady state rate (SSR). The SSR of cells exposed to flow was greater than the basal release level, and increased linearly with increasing shear stress. This study demonstrates that shear stress in certain ranges may not be detrimental to mammalian cell metabolism. In fact, throughout the range of shear stresses studied, metabolite production is maximized by maximizing shear stress.  相似文献   

16.
This study addresses the role of nitric oxide (NO) and downstream signaling pathways in mediating the influences of oscillatory shear stress on the hydraulic conductivity (L(p)) of bovine aortic endothelial cell (BAEC) monolayers. Exposure of BAEC monolayers to 20 dyne/cm2 steady shear stress for 3 h induced a 3.3-fold increase in L(p). When an oscillatory shear amplitude of 10 dyne/cm2 was superimposed on a steady shear of 10 dyne/cm2 to produce a non-reversing oscillatory shear pattern (10+/-10 dyne/cm2), L(p) increased by 3.0-fold within 90 min. When the amplitude was increased to 15 dyne/cm2, resulting in a reversing oscillatory shear pattern (10+/-15 dyne/cm2), the increase in L(p) over 3 h was completely suppressed. Twenty and 10+/-10 dyne/cm2 induced 2.9- and 2.6-fold increases in NO production above non-sheared controls, respectively, whereas 10+/-15 dyne/cm2 stimulated a 14-fold increase in NO production. The inhibition of L(p) with reversing oscillatory shear may be associated with alterations in cyclic guanosine monophosphate (cGMP) production downstream of NO which is up-regulated by reversing oscillatory shear, but is unaffected by steady shear.  相似文献   

17.
Shear stress is known to dilate blood vessels and exert an antiproliferative effect on vascular walls. These effects have partly been ascribed to shear stress-induced regulation of the secretion of endothelium-derived vasoactive substances. In this study, to elucidate the role of shear stress in endothelin production by endothelial cells, we examined the effect of physiological shear stress on the mRNA expression of endothelin-converting enzyme-1 (ECE-1) as well as endothelin-1 (ET-1) in cultured bovine carotid artery endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs), using a parallel plate-type flow chamber. ECE-1 mRNA expression was significantly down-regulated by shear stress in an intensity- and time-dependent manner within the physiological range (1.5 to 15 dyn/cm(2)). ET-1 mRNA expression decreased together with ECE-1 mRNA expression. Shear stress at 15 dyn/cm(2) for 30 min induced a significant increase in the intracellular peroxide concentration, and the down-regulation of ECE-1 and ET-1 mRNA expression by shear stress was attenuated almost completely on treatment with N-acetyl cysteine (NAC), an antioxidant (20 mM). Furthermore, when H(2)O(2) (0.5 to 2 mM) was added to BAECs in static culture, the ECE-1 as well as ET-1 mRNA expression was attenuated in proportion to the concentration of H(2)O(2). It is suggested that endothelial cells sense shear stress as oxidative stress and transduce signal for the regulation of the gene expression of ECE as well as ET to attenuate vascular tone and inhibit the proliferation of vascular smooth muscle cells.  相似文献   

18.
We have examined the effect of shear stress on the production of endothelin by cultured porcine endothelial cells. Low shear stress stimulated the expression of endothelin mRNA in polygonal endothelial cells with a peak time of 2 to 4 hours and also increased the release of immunoreactive endothelin into the culture medium. The expression of endothelin mRNA in the ellipsoidal endothelial cells under higher shear stress was not different from that of the control level. Our results suggest a possible role for hemodynamic shear stress in the regulation of endothelin production in vascular endothelial cells.  相似文献   

19.
Cytokine stimulated endothelin release from endothelial cells   总被引:14,自引:0,他引:14  
Endothelin release from bovine endothelial cells of the aorta, pulmonary artery, and retinal microvessels was measured in response to various cytokines. Transforming growth factor beta (0.05-5 ng/ml) was found to be a potent stimulator (3-4 fold increase) of endothelin secretion in all three cell types. Tumour necrosis factor alpha (0.1-10 ng/ml) and interferon gamma (8-800 U/ml) had a small (1.5-2 fold increase) but significant effect on endothelin secretion from endothelial cells of large vessels but not the retinal microvessels. Interleukin-1 beta, Interleukin-6 and interleukin-8 at various doses did not affect endothelin secretion. These effects were observed at various time points from 6-24 hrs and indicate that of the cytokines tested, only transforming growth factor beta has a potent effect on endothelin release from endothelial cells of different organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号