首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yuan QJ  Zhang ZY  Peng H  Ge S 《Molecular ecology》2008,17(4):1054-1065
The evolutionary history of plants in the southeast Tibetan Plateau might be the most complicated around the world because of the area's extremely complex topography and climate induced by strong tectonic activity in recent history. In this research, we implemented a phylogeographical study using chloroplast sequences (psbA-trnH and trnQ-rps16 intergenic spacer) on Dipentodon, a monotypic or ditypic genus (D. sinicus and D. longipedicellatus) distributed in southwest China and adjacent areas including Myanmar (Burma), northeast India and northern Vietnam. A total of 257 samples from 16 populations from the southeast Tibetan Plateau (D. longipedicellatus) and the Yungui Plateau (D. sinicus) were collected. The results revealed that Dipentodon had 11 haplotypes for the two intergenic spacers, high genetic diversity (h(T) = 0.902) and high genetic differentiation (N(ST) = 0.987 and G(ST) = 0.948). amova analysis showed that the component of among-population within region/species (55.25%) was unexpectedly larger than the among-species/region component (43.69%), which indicates that there is no justification for recognizing two species in Dipentodon. Correlation of pairwise genetic and geographical distances showed that Dipentodon populations in the southeast Tibetan Plateau may have suffered more habitat fragmentation than populations in the Yungui Plateau because of the uplift of the Tibetan Plateau than populations in the Yungui Plateau have. Nested clade analysis showed that 11 haplotypes formed two 3-level, three 2-level and seven 1-level clades, with eight clades showing significant geographical association. However, clade 2-1 and 2-2 did not cluster together, although they are distributed in the same region (Yungui Plateau) and belong to the same species (D. sinicus). This led not only to incongruence between haplotype network and geographical distribution of 2-level clades, but also to paraphyly of D. sinicus to D. longipedicellatus. We concluded that the incongruence and paraphyly may result from incomplete lineage sorting during the rapid and extreme tectonic events of the Tibetan Plateau. The results reported here will no doubt provide new insights into the evolution of biodiversity on the Tibetan Plateau and adjacent areas, and a historical framework for the conservation of biodiversity in this area, including Dipentodon.  相似文献   

2.
3.
4.
The Qinghai-Tibet Plateau (QTP) is well known for being of great importance in the evolution of montane species due to its unique geological history and landform configuration, climate complexity, and diversified habitats. The effect of environmental changes since the Quaternary on species diversification, population genetic structure, and demography under environmental change can be studied using phylogenetic and phylogeographieal approaches. Birds are the most well-studied group of all terrestrial vertebrates with regard to their response to climatic changes over time. Herein, we briefly review the species diversification of birds in response to the uplift of the QTP, focusing on summarizing the different phylogeographical patterns of birds on the Plateau, its southeastern margin, and the Eastern Himalayas and the reasons underlying these patterns. Speciation was found to be closely related to the uplift of the QTP, with different patterns of intraspecific processes: (1) no divergence within a single refuge was identified in a restricted semi-continuous area of the eastern margin of the Plateau; (2) two divergent lineages with separated refugia were located at the south-eastern and north-eastern margins of the plateau; and (3) multiple divergent lineages within subregions were found in the Eastern Himalayas. Glacial movements and induced climate change are considered to be key factors in shaping these different patterns. The species distributed mainly in the heavily ice-covered platform regions of the Plateau experienced population expansion following the retreat of the extensive glaciations, whereas the species distributed on the ice-free edges of the plateau maintained their population size at a stable level. Demographic stresses on the edge species might have been mitigated by the milder climate in comparison to their platform-distributed counterparts. Various behavioral and ecological characteristics, including dispersal capacity, habitat preference, and elevation specificity, along with evolutionary history might have helped to shape these different phylogeographical patterns [Current Zoology 60 (2): 149-161, 2014].  相似文献   

5.
We investigated range-wide phylogeographic variation in three European ash species (Fraxinus sp., Oleaceae). Chloroplast DNA (cpDNA) microsatellites were typed in the thermophilous Fraxinus angustifolia and Fraxinus ornus and the observed haplotypes and the geographic distribution of diversity were compared to cpDNA data previously obtained in the more cold-tolerant Fraxinus excelsior. We found wide-ranging haplotype sharing between the phylogenetically close F. angustifolia and F. excelsior, suggesting hybridization (i) in common glacial refuges in the Iberian Peninsula, northern Italy, the eastern and/or Dinaric Alps and the Balkan Peninsula, and/or (ii) during postglacial recolonization. The data allowed us to propose additional glacial refuges for F. angustifolia in southern Italy and in Turkey, and populations from the latter region were particularly polymorphic. There was evidence for refuge areas in Italy, the Balkan Peninsula and Turkey for F. ornus, which did not share any single chloroplast haplotype with the other species. In both F. angustifolia and F. ornus, cpDNA diversity (h(S) = 0.027 and h(S) = 0.009, respectively) was lower and fixation levels (G(ST) = 0.964 and G(ST) = 0.983, respectively) higher than in sympatric F. excelsior (h(S) = 0.096, G(ST) = 0.870). These diversity patterns could be due to temperature tolerance or the demographic history.  相似文献   

6.
Recent data accumulated from fields as varied as avian palaeontology, palaeobotany, historical biogeography and molecular phylogenetics provide a completely renewed picture of the origin, evolution and distribution of modern birds. Although the origin of birds is still controversial, their Tertiary history is now well known. The reconstruction of palaeoenvironments and the identification of shifts in major vegetation belts and habitats during the Pliocene–Pleistocene epochs have added to these recent developments. Together they provide a new perspective on speciation and extinction rates since the late Pliocene and the establishment of modern avifaunas in the western Palaearctic.  相似文献   

7.
The historic processes which have led to the present-day patterns of genetic structure in the marine coastal fauna of the Northeast Atlantic are still poorly understood. While tectonic uplifts and changes in sea level may have caused large-scale vicariance, warmer conditions during glacial maxima may have allowed pockets of diversity to persist to a much wider extent than in the Northwestern Atlantic. The large-scale geographic distribution of deeply divergent lineages of the coastal polychaete tubeworms Pectinaria koreni (two clades) and Owenia fusiformis (three clades) were compared using a fragment of the mitochondrial cytochrome oxidase I gene (mtCOI). All lineages were present along the biogeographic transition zone on the north coast of Brittany (France) and we found evidence pointing towards congruence in the timing of cladogenic events between Pectinaria sp. (P. auricoma/P. belgica and P. koreni) and Owenia sp., suggesting a shared history of vicariant events. More conserved 16SrRNA sequences obtained from four species of Pectinariidae together with mtCOI sequences of P. koreni seem consistent with an initial establishment of pectinariids in the north, and a southward colonization of the Northeast Atlantic. Phylogeographic patterns in O. fusiformis were also consistent with a north/south pattern of lineage splitting and congruent levels of divergence were detected between lineages of both species. We observed signatures of both persistence in small northern glacial refugia, and of northwards range expansion from regions situated closer to the Mediterranean. However, whether the recolonization of the Northeast Atlantic by both species actually reflects separate interglacial periods is unclear with regards to the lack of molecular clock calibration in coastal polychaete species.  相似文献   

8.
Macaranga (Euphorbiaceae) includes about 280 species with a palaeotropic distribution. The genus not only comprises some of the most prominent pioneer tree species in Southeast Asian lowland dipterocarp forests, it also exhibits a substantial radiation of ant-plants (myrmecophytes). Obligate ant-plant mutualisms are formed by about 30 Macaranga species and 13 ant species of the genera Crematogaster or Camponotus. To improve our understanding of the co-evolution of the ants and their host plants, we aim at reconstructing comparative organellar phylogeographies of both partners across their distributional range. Preliminary evidence indicated that chloroplast DNA introgression among closely related Macaranga species might occur. We therefore constructed a comprehensive chloroplast genealogy based on DNA sequence data from the noncoding ccmp2, ccmp6, and atpB-rbcL regions for 144 individuals from 41 Macaranga species, covering all major evolutionary lineages within the three sections that contain myrmecophytes. A total of 88 chloroplast haplotypes were identified, and grouped into a statistical parsimony network that clearly distinguished sections and well-defined subsectional groups. Within these groups, the arrangement of haplotypes followed geographical rather than taxonomical criteria. Thus, up to six chloroplast haplotypes were found within single species, and up to seven species shared a single haplotype. The spatial distribution of the chloroplast types revealed several dispersals between the Malay Peninsula and Borneo, and a deep split between Sabah and the remainder of Borneo. Our large-scale chloroplast genealogy highlights the complex history of migration, hybridization, and speciation in the myrmecophytes of the genus Macaranga. It will serve as a guideline for adequate sampling and data interpretation in phylogeographic studies of individual Macaranga species and species groups.  相似文献   

9.
Myricaria laxiflora is restricted to the riverbanks of the Yangtze River valley and will be completely lost owing to the construction of the Three Gorges Dam. Genetic diversity and structure of nine natural and one ex situ populations were investigated using amplified fragment length polymorphisms (AFLPs). A moderate level of gene diversity was found in natural populations, while the ex situ population had the highest. The F statistics calculated by different approaches consistently revealed a high genetic differentiation among natural populations, contributing >45% of the total gene diversity. The Bayesian-based analysis differentiated nine independent populations in accordance with the sites sampled. Estimates of gene flow by F(ST) and coalescent-based simulation analysis indicated a restricted recurrent gene exchange among populations (Nm = 0.290-0.401), whereas genetic distance-based clustering and coalescent-based assignment analyses revealed significant genetic isolation among populations. The migration pattern in M. laxiflora is best explained by a classical metapopulation model, but with a unique unidirectional direction underlined by hydrochoric force that drove dispersal of seeds and propagules from upstream toward downstream populations. Previous efforts in preserving genomic integrity in ex situ conservation were evaluated, and the results provide valuable information to formulate conservation guidelines for successfully reintroducing M. laxiflora to the wild.  相似文献   

10.
Xiang XL  Xi YL  Wen XL  Zhang G  Wang JX  Hu K 《Molecular ecology》2011,20(14):3027-3044
Spatio-temporal patterns and processes of genetic differentiation in passively dispersing zooplankton are drawing much attention from both ecologists and evolutionary biologists. Two opposite phylogeographical scenarios have already been demonstrated in rotifers, which consist of high levels of genetic differentiation among populations even on small geographical scales on the one hand and the traditionally known cosmopolitanism that is associated with high levels of gene flow and long-distance dispersal via diapausing stages on the other hand. Here, we analysed the population genetic structure and the phylogeography of the Brachionus calyciflorus species complex in eastern China. By screening a total of 318 individuals from ten locations along a 2320-km gradient and analysing samples from two growing seasons, we aimed at focusing on both small- and large-scale patterns. We identified eight cryptic species and verified species status of two of these by sexual reproduction tests. Samples in summer and winter yielded different cryptic species. The distribution patterns of these genetically distinct cryptic species were diverse across eastern China, from full cosmopolitanism to local endemism. The two most abundant cryptic species BcWIII and BcSW showed a pattern of strong genetic differentiation among populations and no significant isolation by distance. Long-distance colonization, secondary contact and recent range expansion are probably responsible for the indistinct pattern of isolation by distance. Our results suggest that geographical distance is more important than temporal segregation across seasons in explaining population differentiation and the occurrence of cryptic species. We explain the current phylogeographical structure in the B. calyciflorus species complex by a combination of recent population expansion, restricted gene flow, priority effects and long-distance colonization.  相似文献   

11.
12.
13.
Previous studies have suggested that the presence of sea ice is an important factor in facilitating migration and determining the degree of genetic isolation among contemporary arctic fox populations. Because the extent of sea ice is dependent upon global temperatures, periods of significant cooling would have had a major impact on fox population connectivity and genetic variation. We tested this hypothesis by extracting and sequencing mitochondrial control region sequences from 17 arctic foxes excavated from two late-ninth-century to twelfth-century AD archaeological sites in northeast Iceland, both of which predate the Little Ice Age (approx. sixteenth to nineteenth century). Despite the fact that five haplotypes have been observed in modern Icelandic foxes, a single haplotype was shared among all of the ancient individuals. Results from simulations within an approximate Bayesian computation framework suggest that the rapid increase in Icelandic arctic fox haplotype diversity can only be explained by sea-ice-mediated fox immigration facilitated by the Little Ice Age.  相似文献   

14.
Gentiana sect. Ciminalis consists of seven mostly ecologically or geographically vicariant and closely related species which are distributed throughout the South and Central European high mountains. The analysis of a RAPD data set and trn L-intron and ITS sequences resulted in slightly different phylogenetic hypotheses. In the preferred hypothesis the group consists of two completely resolved main lineages: 1) G. clusii and G. alpina. 2) G. dinarica, G. acaulis, G. ligustica, G. angustifolia and G. occidentalis. The most important conclusions we have drawn from this phylogenetic hypothesis and from the observed patterns of molecular variation are: 1) The calcifuge ecology of G. acaulis and G. alpina evolved independently from calcicole ancestors. 2) Among the calcicole taxa speciation proceeded from East to West in a simple vicariant pattern. 3) The application of a provisional molecular clock indicates that speciation events in sect. Ciminalis probably occurred in the Quaternary. 4) Differences in infraspecific genetic variation among the widespread species suggest that G. alpina probably experienced more recent dispersal or gene flow than G. clusii and G. acaulis. 5) The large number of mutations in the lineage leading to G. angustifolia, compared to the few mutations in the lineage leading to G. dinarica, may be a result of their different population histories. While the extant range of G. angustifolia was strongly affected by Quaternary climatic fluctuations, that of G. dinarica has had a more stable climatic history. 6) The low number of mutations and the basal position in one clade of the preferred cladogram leads to the conclusion that G. dinarica is the species most similar to the last common ancestor of sect. Ciminalis.  相似文献   

15.
Swertia L. is a large genus in Swertiinae (Gentianaceae). In China, many Swertia species are used as traditional Tibetan medicines, known as “Zangyinchen” or “Dida”. However, the phylogenetic relationships among Swertia medicinal plants and their wild relatives have remained unclear. In this study, we sequenced and assembled 16 complete chloroplast (cp) genomes of 10 Swertia species, mainly distributed in Qinghai Province, China. The results showed that these species have typical structures and characteristics of plant cp genomes. The sizes of Swertia cp genomes are ranging from 149,488 bp to 154,097 bp. Most Swertia cp genomes presented 134 genes, including 85 protein coding genes, eight rRNA genes, 37 tRNA genes, and four pseudogenes. Furthermore, the GC contents and boundaries of cp genomes are similar among Swertia species. The phylogenetic analyses indicated that Swertia is a complex polyphyletic group. In addition, positive selection was found in psaI and petL genes, indicating the possible adaptation of Qinghai Swertia species to the light environment of the Qinghai-Tibet plateau. These new cp genome data could be further investigated to develop DNA barcodes for Swertia medicinal plants and for additional systematic studies of Swertia and Swertiinae species.  相似文献   

16.
The Pyrenean region exhibits high levels of endemism suggesting a major contribution to the phylogeography of European species. But, to date, the role of the Pyrenees and surrounding areas as a glacial refugium for temperate species remains poorly explored. In the current study, we investigated the biogeographic role of the Pyrenean region through the analyses of genetic polymorphism and morphology of a typical forest-dwelling small mammal, the bank vole ( Myodes glareolus ). Analyses of the mitochondrial cytochrome b gene and the third upper molar (M3) show a complex phylogeographic structure in the Pyrenean region with at least three distinct lineages: the Western European, Spanish and Basque lineages. The Basque lineage in the northwestern (NW) Pyrenees was identified as a new clearly differentiated and geographically localized bank vole lineage in Europe. The average M3 shape of Basque bank voles suggests morphological differentiation but also restricted genetic exchanges with other populations. Our genetic and morphological results as well as palaeo-environmental and fossils records support the hypothesis of a new glacial refugium in Europe situated in the NW Pyrenees. The permissive microclimatic conditions that prevailed for a long time in this region may have allowed the survival of temperate species, including humans. Moreover, local differentiation around the Pyrenees is favoured by the opportunity for populations to track the shift of the vegetation belt in altitude rather than in latitude. The finding of the Basque lineage is in agreement with the high level of endemic taxa reported in the NW Pyrenees.  相似文献   

17.
The evolutionary importance of hybridization in animals has been subject of much debate. In this study, we examined the influence of hydrogeographic history and hybridization on the present distribution of nuclear and mitochondrial DNA variation in two pupfish species, Cyprinodon atrorus and Cyprinodon bifasciatus. Results presented here indicate that there has been limited introgression of nuclear genes; however, mtDNA introgression has been substantial, with complete replacement of the C. bifasciatus mitochondrial genome by that of C. atrorus. Subsequent to this replacement, there has been diversification of mitochondrial haplotypes along major geographic regions in the basin. Evidence was also found that mitochondrial replacement follows a predictable, cyclical pattern in this system, with isolation and diversification followed by re-contact and replacement of C. bifasciatus mitochondrial haplotypes by those of C. atrorus. This pattern is best explained by a combination of a numeric bias towards C. atrorus and mating site selection rather than selection for C. atrorus mitochondrial genome. These results demonstrate the important role hybridization can play in evolution.  相似文献   

18.
The present paper reconstructs the biogeographic diversification for Nolana L.f. (Solanaceae), a genus of 89 endemic species largely restricted to fog-dependent desert lomas formations of coastal Peru and Chile. Previous efforts have reconstructed a phylogenetic estimate for Nolana using a combination of molecular markers. Herein, we expand on those results to examine hypotheses of biogeographic origins and diversification patterns. Nolana occupies habitats within a continuous coastal desert and forms a terrestrial archipelago of discrete "islands" unique in size, topography, and species composition. Each locality contains at least one Nolana species and many contain multiple species in sympatry. The genus has a Chilean origin, with the basal clades confined to Chile with wide geographic and ecological distributions. Peru contains two strongly supported clades, suggesting two introductions with subsequent radiation. A Chilean clade of shrubby, small-flowered species appears to have had its origins from the same ancestors of the second line that radiated in Peru and northern Chile. Nolana galapagensis is endemic to the Islas Galapagos, with origins traced to Peruvian taxa with a divergence time of 0.35 mya. Rates of diversification over the past 4.02 mya in Nolana, in one of the driest habitats on Earth, suggest rapid adaptive radiation in several clades. Success in Nolana may be attributed to characters that confer a competitive advantage in unpredictable and water-dependent environments, such as succulent leaf anatomy and ecophysiology, and the reproductive mericarp unique to Nolana. The processes affecting or shaping the biota of western South America are discussed.  相似文献   

19.
The Eastern Canary Islands are the emerged tips of a continuous volcanic ridge running parallel to the northeastern African coast, originated by episodic volcanic eruptions that can be traced back to the Miocene and that, following a major period of quiescence and erosion, continued from the Pliocene to the present day. The islands have been periodically connected by eustatic sea-level changes resulting from Pleistocene glacial cycles. The ground-dwelling spider Dysdera lancerotensis Simon, 1907 occurs along the entire ridge, except on recent barren lavas and sand dunes, and is therefore an ideal model for studying the effect of episodic geological processes on terrestrial organisms. Nested clade and population genetic analyses using 39 haplotypes from 605 base pairs of mitochondrial DNA cytochrome c oxidase I sequence data, along with phylogenetic analyses including two additional mitochondrial genes, uncover complex phylogeographical and demographic patterns. Our results indicate that D. lancerotensis colonized the ridge from north to south, in contrast to what had been expected given the SSW-NNE trend of volcanism and to what had been reported for other terrestrial arthropods. The occurrence of several episodes of extinction, recolonization and expansion are hypothesized for this species, and areas that act as refugia during volcanic cycles are identified. Relaxed molecular clock methods reveal divergence times between main haplotype lineages that suggest an older origin of the northern islets than anticipated based on geological evidence. This study supports the key role of volcanism in shaping the distribution of terrestrial organisms on oceanic islands and generates phylogeographical predictions that warrant further research into other terrestrial endemisms of this fascinating region.  相似文献   

20.
The sequences of the mitochondrial cytochrome b gene and restriction site variation in the spacer region of the nuclear ribosomal RNA gene [rDNA-restriction fragment length polymorphism (RFLP)] were analysed to determine the phylogeographic structure of the Japanese dormouse ( Glirulus japonicus ), which is threatened by deforestation and has been designated an endangered species in Japan. The phylogenetic tree of cytochrome b grouped G. japonicus into six geographical populations: north-eastern Honshu (I), central Honshu (II), west-central Honshu/Kii Peninsula (III), western Honshu (IV), Shikoku (V), and westernmost Honshu/Kyushu (VI); the genetic distances among these groups suggest divergence in the Late Tertiary. The lineage of group VI was located at the basal position in the phylogenetic tree, followed by the radiation of the other lineages. An rDNA-RFLP analysis of 15 restriction sites roughly supported such genetic isolation; groups I, II, III, IV, V and VI have five, two, one, one, one and four unique restriction sites, respectively, revealing four geographic groups as cryptic species: I, II, III + IV + V and VI. Our results reveal the ancient divergences of the local population, which has a complicated evolutionary history, and should be useful in developing a framework for the conservation of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号