首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Basic helix-loop-helix (bHLH) regulatory proteins are known to bind to a single DNA consensus sequence referred to as an E-box. The E-box is present in the regulatory elements of many developmentally controlled genes, including most muscle-specific genes such as troponin I (TnI). Although the E-box consensus is minimally defined as CANNTG, the adjacent nucleotides of functional E-boxes are variable for genes regulated by the bHLH proteins. In order to examine how E-box regulatory regions containing different internal and flanking nucleotides function when placed within the context of a single regulatory element, the E-box region (14 bp) present within the TnI enhancer was substituted with the corresponding E-box sequences derived from the muscle-specific M-creatine kinase (MCK) and cardiac alpha-actin regulatory elements as well as from the immunoglobulin kappa (Ig kappa) enhancer. Within the TnI enhancer, the E-box sequence derived from cardiac alpha-actin was inactive whereas the corresponding sequence from the MCK right E-box efficiently restored wild-type enhancer activity in muscle cells. Intermediate levels of gene activity were observed for TnI enhancers containing E-boxes derived from the MCK left E-box site or from the Ig kappa E2 E-box. DNA binding studies of MyoD:E12 protein complexes with each substituted TnI enhancer confirmed that DNA binding activity in vitro mimics the relative strength of the enhancers in vivo. These studies demonstrate that the specific nucleotide composition of individual E-boxes, which are contained within the regulatory elements of most if not all muscle-specific genes, contributes to the complex regulatory mechanisms governing bHLH-mediated gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号