首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Zhang A  Gonzalez SM  Cantor EJ  Chong S 《Gene》2001,275(2):241-252
Affinity purification of recombinant proteins has been facilitated by fusion to a modified protein splicing element (intein). The fusion protein expression can be further improved by fusion to a mini-intein, i.e. an intein that lacks an endonuclease domain. We synthesized three mini-inteins using overlapping oligonucleotides to incorporate Escherichia coli optimized codons and allow convenient insertion of an affinity tag between the intein (predicted) N- and C-terminal fragments. After examining the splicing and cleavage activities of the synthesized mini-inteins, we chose the mini-intein most efficient in thiol-induced N-terminal cleavage for constructing a novel intein fusion system. In this system, green fluorescent protein (GFP) was fused to the C-terminus of the affinity-tagged mini-intein whose N-terminus was fused to a target protein. The design of the system allowed easy monitoring of soluble fusion protein expression by following GFP fluorescence, and rapid purification of the target protein through the intein-mediated cleavage reaction. A total of 17 target proteins were tested in this intein-GFP fusion system. Our data demonstrated that the fluorescence of the induced cells could be used to measure soluble expression of the intein fusion proteins and efficient intein cleavage activity. The final yield of the target proteins exhibited a linear relationship with whole cell fluorescence. The intein-GFP system may provide a simple route for monitoring real time soluble protein expression, predicting final product yields, and screening the expression of a large number of recombinant proteins for rapid purification in high throughput applications.  相似文献   

2.
Protein splicing elements (inteins), capable of catalyzing controllable peptide bond cleavage reactions, have been used to separate recombinant proteins from affinity tags during affinity purification. Since the inteins eliminate the use of a protease in the recovery process, the intein-mediated purification system has the potential to significantly reduce recovery costs for the industrial production of recombinant proteins. Thus far, the intein system has only been examined and utilized for expression and purification of recombinant proteins at the laboratory scale for cells cultivated at low cell densities. In this study, protein splicing and in vitro cleavage of intein fusion proteins expressed in high-cell-density fed-batch fermentations of recombinant Escherichia coli were examined. Three model intein fusion constructs were used to examine the stability and splicing/cleavage activities of the fusion proteins produced under high-cell-density conditions. The data indicated that the intein fusion protein containing the wild-type intein catalyzed efficient in vivo protein splicing during high-cell-density cultivation. Also, the intein fusion proteins containing modified inteins catalyzed efficient thiol-induced in vitro cleavage reactions. The results of this study demonstrated the potential feasibility of using the intein-mediated protein purification system for industrial-scale production of recombinant proteins.  相似文献   

3.
The intein-mediated purification system has the potential to significantly reduce the recovery costs of industrial recombinant proteins. The ability of inteins to catalyze a controllable peptide bond cleavage reaction can be used to separate a recombinant protein from its affinity tag during affinity purification. Inteins have been combined with a chitin-binding domain to serve as a self-cleaving affinity tag, facilitating highly selective capture of the fusion protein on an inexpensive substrate--chitin (IMPACT) system, New England Biolabs, Beverly, MA). This purification system has been used successfully at a lab scale in low cell density cultures, but has not been examined comprehensively under high-cell density conditions in defined medium. In this study, the intein-mediated purification of three commercially relevant proteins expressed under high-cell density conditions in E. coli was studied. Additionally, losses during the purification process were quantified. The data indicate that the intein fusion proteins expressed under high cell density fermentations were stable in vivo after induction for a significant duration, and the intein fusion proteins could undergo thiol or pH and temperature initiated cleavage reaction in vitro. Thus, the intein-mediated protein purification system potentially could be employed for the production of recombinant proteins at the industrial-scale.  相似文献   

4.
A two-intein purification system was developed for the affinity purification of GFPmut3*, a mutant of green fluorescent protein. The GFPmut3* was sandwiched between two self-cleaving inteins. This approach avoided the loss of the target protein which may result from in vivo cleavage of a single intein tag. The presence of N- and C-terminal chitin-binding domains allowed the affinity purification by a single-affinity chitin column. After the fusion protein was expressed and immobilized on the affinity column, self-cleavage of the inteins was sequentially induced to release the GFPmut3*. The yield was 2.41 mg from 1 l of bacterial culture. Assays revealed that the purity was up to 98% of the total protein. The fluorescence and circular dichroism spectrum of GFPmut3* demonstrated that the purified protein retains the correctly folded structure and function.  相似文献   

5.
Purification of recombinant proteins is often a challenging process involving several chromatographic steps that must be optimized for each target protein. Here, we developed a self-excising module allowing single-step affinity chromatography purification of untagged recombinant proteins. It consists of a 250-residue-long self-processing module of the Neisseria meningitidis FrpC protein with a C-terminal affinity tag. The N terminus of the module is fused to the C terminus of a target protein of interest. Upon binding of the fusion protein to an affinity matrix from cell lysate and washing out contaminating proteins, site-specific cleavage of the Asp-Pro bond linking the target protein to the self-excising module is induced by calcium ions. This results in the release of the target protein with only a single aspartic acid residue added at the C terminus, while the self-excising affinity module remains trapped on the affinity matrix. The system was successfully tested with several target proteins, including glutathione-S-transferase, maltose-binding protein, beta-galactosidase, chloramphenicol acetyltransferase, and adenylate cyclase, and two different affinity tags, chitin-binding domain or poly-His. Moreover, it was demonstrated that it can be applied as an alternative to two currently existing systems, based on the self-splicing intein of Saccharomyces cerevisiae and sortase A of Staphylococcus aureus.  相似文献   

6.
Protein splicing involves the excision of an intervening polypeptide sequence, the intein, from a precursor protein and the concomitant ligation of the flanking polypeptides, the exteins, by a peptide bond. Most reported inteins have a C-terminal asparagine residue, and it has been shown that cyclization of this residue is coupled to peptide bond cleavage between the intein and C-extein. We show that the intein interrupting the DNA polymerase II DP2 subunit in Pyrococcus abyssi, which has a C-terminal glutamine, is capable of facilitating protein splicing. Substitution of an asparagine for the C-terminal glutamine moderately improves the rate and extent of protein splicing. However, substitution of an alanine for the penultimate histidine residue, with either asparagine or glutamine in the C-terminal position, prevents protein splicing and facilitates cleavage at the intein N terminus. The intein facilitates in vitro protein splicing only at temperatures above 30 degrees C and can be purified as a nonspliced precursor. This temperature dependence has enabled us to characterize the optimal in vitro splicing conditions and determine the rate constants for splicing as a function of temperature.  相似文献   

7.
A naturally occurring split intein from the dnaE gene of Synechocystis sp. PCC6803 (Ssp DnaE intein) has been shown to mediate efficient in vivo and in vitro trans-splicing in a foreign protein context. A cis-splicing Ssp DnaE intein construct displayed splicing activity similar to the trans-splicing form, which suggests that the N- and C-terminal intein fragments have a high affinity interaction. An in vitro trans-splicing system was developed that used a bacterially expressed N-terminal fragment of the Ssp DnaE intein and either a bacterially expressed or chemically synthesized intein C-terminal fragment. Unlike artificially split inteins, the Ssp DnaE intein fragments could be reconstituted in vitro under native conditions to mediate splicing as well as peptide bond cleavage. This property allowed the development of an on-column trans-splicing system that permitted the facile separation of reactants and products. Furthermore, the trans-splicing activity of the Ssp DnaE intein was successfully applied to the cyclization of proteins in vivo. Also, the isolation of the unspliced precursor on chitin resin allowed the cyclization reaction to proceed in vitro. The Ssp DnaE intein thus represents a potentially important protein for in vivo and in vitro protein manipulation.  相似文献   

8.
基于蛋白质内含子的蛋白质纯化自我断裂标签已经被广泛使用超过15年之久.但这一系统体内表达过程的提前断裂一直是限制这一技术广泛应用的瓶颈,特别是在需要高温表达和长表达周期的真核表达系统中.本研究介绍了一种利用小肽控制的基于蛋白质内含子和非层析标签ELP(elastin-like polypeptide)的自我断裂系统.在这一系统中,蛋白质内含子的体内外活性严格受到其结构互补小肽控制.在体内表达不含有互补小肽时,蛋白质内含子不具有活性;而在体外添加结构互补小肽,蛋白质内含子结构恢复并发生C端断裂反应释放目的蛋白.由于非层析标签ELP的引入,因此整个纯化过程可以简单地通过几步机械沉淀完成.此外,这一系统反应pH、小肽与前体蛋白之间的摩尔比及断裂速率也一并进行了系统的研究.  相似文献   

9.
Previously, we reported a non‐chromatographic protein purification method exploiting the highly specific interaction between the dockerin and cohesin domains from Clostridium thermocellum and the reversible aggregation property of elastin‐like polypeptide (ELP) to provide fast and cost‐effective protein purification. However, the bound dockerin‐intein tag cannot be completely dissociated from the ELP‐cohesin capturing scaffold due to the high binding affinity, resulting in a single‐use approach. In order to further reduce the purification cost by recycling the ELP capturing scaffold, a truncated dockerin domain with the calcium‐coordinating function partially impaired was employed. We demonstrated that the truncated dockerin domain was sufficient to function as an effective affinity tag, and the target protein was purified directly from cell extracts in a single binding step followed by intein cleavage. The efficient EDTA‐mediated dissociation of the bound dockerin‐intein tag from the ELP‐cohesin capturing scaffold was realized, and the regenerated ELP capturing scaffold was reused in another purification cycle without any decrease in the purification efficiency. This recyclable non‐chromatographic based affinity method provides an attractive approach for efficient and cost‐effective protein purification. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:968–971, 2013  相似文献   

10.
Mathys S  Evans TC  Chute IC  Wu H  Chong S  Benner J  Liu XQ  Xu MQ 《Gene》1999,231(1-2):1-13
The determinants governing the self-catalyzed splicing and cleavage events by a mini-intein of 154 amino acids, derived from the dnaB gene of Synechocystis sp. were investigated. The residues at the splice junctions have a profound effect on splicing and peptide bond cleavage at either the N- or C-terminus of the intein. Mutation of the native Gly residue preceding the intein blocked splicing and cleavage at the N-terminal splice junction, while substitution of the intein C-terminal Asn154 resulted in the modulation of N-terminal cleavage activity. Controlled cleavage at the C-terminal splice junction involving cyclization of Asn154 was achieved by substitution of the intein N-terminal cysteine residue with alanine and mutation of the native C-extein residues. The C-terminal cleavage reaction was found to be pH-dependent, with an optimum between pH6.0 and 7.5. These findings allowed the development of single junction cleavage vectors for the facile production of proteins as well as protein building blocks with complementary reactive groups. A protein sequence was fused to either the N-terminus or C-terminus of the intein, which was fused to a chitin binding domain. The N-terminal cleavage reaction was induced by 2-mercaptoethanesulfonic acid and released the 43kDa maltose binding protein with an active C-terminal thioester. The 58kDa T4 DNA ligase possessing an N-terminal cysteine was generated by a C-terminal cleavage reaction induced by pH and temperature shifts. The intein-generated proteins were joined together through a native peptide bond. This intein-mediated protein ligation approach opens up novel routes in protein engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号