首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 236 毫秒
1.
Δ~6-脂肪酸脱氢酶的分子生物学研究进展   总被引:1,自引:0,他引:1  
包括γ_亚麻酸在内的多不饱和脂肪酸由于在人类健康中的重要作用而成为有价值的产品 ,目前市场上对γ_亚麻酸的需求持续增长 ,然而当前来源难以满足市场的需求 ,寻找合适的替代来源将有助于解决这一问题。Δ6 _脂肪酸脱氢酶是多不饱和脂肪酸合成途径中的限速酶 ,这里从Δ6 _脂肪酸脱氢酶的基因克隆、结构和功能的研究、系统进化和基因工程应用等方面探讨了Δ6 _脂肪酸脱氢酶的研究进展。  相似文献   

2.
γ-亚麻酸作为人体必需的不饱和脂肪酸,对人体的激素调节及脂肪酸代谢发挥着重要的生理作用.△6-脂肪酸脱氢酶是多不饱和脂肪酸合成途径中的限速酶.本文介绍了不饱和脂肪酸γ-亚麻酸代谢途径中的关键酶△6-脂肪酸脱氢酶的结构功能与目前△6-脂肪酸脱氢酶的基因工程研究进展,并对其应用进行了展望,以期为利用基因工程手段生产γ-亚麻酸提供参考.  相似文献   

3.
包括γ-亚麻酸在内的多不饱和脂肪酸由于在人类健康中的重要作用而成为有价值的产品,目前市场上对γ-亚麻酸的需求持续增长,然而当前来源难以满足市场的需求,寻找合适的替代来源将有助于解决这一问题。Δ6-脂肪酸脱氢酶是多不饱和脂肪酸合成途径中的限速酶,这里从Δ6-脂肪酸脱氢酶的基因克隆、结构和功能的研究、系统进化和基因工程应用等方面探讨了Δ6-脂肪酸脱氢酶的研究进展。  相似文献   

4.
γ-亚麻酸(GLA)作为人体必需的不饱和脂肪酸,具有重要的营养和药用价值。△^6-脂肪酸脱氢酶是γ-亚麻酸合成途径中的关键酶。为了在毕赤酵母中建立一种新的合成γ-亚麻酸的表达体系,将高山被孢霉△^6-脂肪酸脱氢酶基因与胞内表达载体pPIC3.5K连接,SacⅠ线性化后电击法转化毕赤酵母SMD1168,获得的转化子经PCR鉴定目的基因已整合到毕赤酵母的基因组中。用甲醇诱导表达,通过脂肪酸气相色谱和气相色谱-质谱(GC-MS)联用分析表明高山被孢霉△^6-脂肪酸脱氢酶基因在毕赤酵母中获得表达,γ-亚麻酸含量占总脂肪酸的16.26%。  相似文献   

5.
深黄被孢霉△^6—脂肪酸脱氢酶基因的克隆及序列分析   总被引:14,自引:0,他引:14  
γ-亚麻酸(GLA,C18:3△^6,9,12)是由△^6-脂肪酸脱氢酶以亚油酸(LA,C18:2△^9,12)为底物,在C6位脱氢形成的。由于在人体中,γ-亚麻酸是花生四烯酸、前列腺素类和白三烯类等生理活性物质的前体物,而深黄被孢霉是目前用于微生物发酵生产γ-亚麻酸的主要菌株。本文根据脂肪酸脱氢酶的保守区设计引物,利用反转录聚合酶链式反应从丝状真菌深黄被孢霉中克隆了编码△^6-脂肪酸脱氢酶的cDNA,全长为1374个核苷酸,编码457个氨基酸,但与其他位点的脂肪酸脱氢酶不同的是,△^6-脂肪酸脱氢酶在其序列的N端特有细胞色素b5(Cytb5)区。这是国际上对深黄被孢霉△^6-脂肪酸脱氢酶基因的首次报道。  相似文献   

6.
添加α-亚麻酸作为底物,经半乳糖诱导,在含有少根根霉△6-脂肪酸脱氢酶基因的酿酒酵母总脂肪酸中检测到十八碳四烯酸的生成;同时添加亚油酸和α-亚麻酸时,检测到γ-亚麻酸和十八碳四烯酸生成,而且十八碳四烯酸的含量是γ-亚麻酸含量的3.81倍,表明在酿酒酵母中少根根霉△6-脂肪酸脱氢酶不仅能催化α-亚麻酸生成十八碳四烯酸,而且偏好n-3途径中的底物α-亚麻酸.同样,在改变少根根霉△6-脂肪酸脱氢酶基因的转译起始密码子周边序列后所构建的转基因酵母中,也得到类似的结果,而且各种目的脂肪酸的含量均有明显提高.  相似文献   

7.
添加α-亚麻酸作为底物,经半乳糖诱导,在含有少根根霉Δ^6-脂肪酸脱氢酶基因的酿酒酵母总脂肪酸中检测到十八碳四烯酸的生成;同时添加亚油酸和α-亚麻酸时,检测到γ-亚麻酸和十八碳四烯酸生成,而且十八碳四烯酸的含量是γ-亚麻酸含量的3.81倍,表明在酿酒酵母中少根根霉Δ^6-脂肪酸脱氢酶不仅能催化α-亚麻酸生成十八碳四烯酸,而且偏好n-3途径中的底物α-亚麻酸。同样,在改变少根根霉Δ^6-脂肪酸脱氢酶基因的转译起始密码子周边序列后所构建的转基因酵母,也得到类似的结果,而且各种目的脂肪酸的含量均有明显提高。  相似文献   

8.
根据真菌△^6 -脂肪酸脱氢酶基因保守的组氨酸Ⅱ区和Ⅲ区附近保守序列设计兼并引物进行RT-PCR,得到雅致枝霉(Thamnidium elegans)As3.2806△^6 -脂肪酸脱氢酶基因459bp部分cDNA序列,然后通过快速扩增cDNA末端技术(RACE)向两端延伸得到1504bp的△^6 -脂肪酸脱氢酶基因全长cDNA序列。序列分析表明有一个1377bp、编码459个氨基酸的开放阅读框TED6。推测的氨基酸序列与已知其他真菌的△^6 -脂肪酸脱氧酶基因的氨基酸序列比对,具有3个组氨酸保守区、2个疏水区及N末端细胞色素b5融合区。将此编码区序列亚克隆到酿酒酵母缺陷型菌株INVSel的表达载体pYES2.0中,构建表达载体pYTED6,并在酿酒酵母INVSel中异源表达。通过气相色谱(GC)和气相色谱,质谱(GC-MS)分析表明,该序列在酿酒酵母中获得表达,产生γ-亚麻酸(GLA)的含量占酵母总脂肪酸的7.5%。证明此序列编码的蛋白能将外加的亚油酸转化为γ-亚麻酸,是一个新的有功能的△^6 -脂肪酸脱氢酶基因(GenBank.AY941161)。  相似文献   

9.
少根根霉△^6-脂肪酸脱氢酶基因的克隆和表达   总被引:1,自引:0,他引:1  
根据真菌△^6-脂肪酸脱氢酶保守的氨基酸序列设计简并引物进行RT-PCR,获得一个593 bp的cDNA片段,再根据获得的部分序列设计基因特异性引物,通过cDNA末端扩增技术(RACE)获得该cDNA的3’和5’序列,从而得到全长为1482bp的cDNA序列。序列分析结果表明,该序列具有一个长度为1377bp、编码458个氨基酸的开放阅读框,所编码蛋白质的大小为52kD。与报道的△^6-脂肪酸脱氢酶一样,推测的氨基酸序列具有膜整合脂肪酸脱氢酶特异性的3个组氨酸保守区和疏水结构,在其氨基酸序列的N-末端具有类似于细胞色素b5的血红素结合区。该序列为一个新的编码△^6-脂肪酸脱氢酶的基因,为了验证其功能,把开放阅读框序列RAD6亚克隆到表达载体pYES2.0,构建重组表达载体pYRAD6,并转化到酿酒酵母的缺陷型菌株INVScl进行表达。通过气相色谱(GC)和气相色谱/质谱(GC-MS)分析表明,该序列在酿酒酵母中获得表达。所编码的酶具有△^6-脂肪酸脱氢酶活性,能将外源性的底物亚油酸转化为γ-亚麻酸,γ-亚麻酸的含量占酵母总脂肪酸的3.85%。  相似文献   

10.
通过气相色谱法(GC)快速分析8种真菌的脂肪酸成分,发现匍枝根霉(Rhizopus stolonifer)具有较高的γ-亚麻酸含量,利用RT-PCR和RACE方法获得了全长为1475bp的匍枝根霉△6-脂肪酸脱氢酶基因的cDNA序列,其中开放阅读框为1380bp,编码459个氨基酸。生物信息学分析所克隆的基因具有△6-脂肪酸脱氢酶的典型结构:N端具有细胞色素b5结构、具有3个保守的组氨酸区序列和跨膜结构;把该基因的开放阅读框序列连接到表达载体pYES2.0上,构建重组表达载体pYRnD6D,并将其转入缺陷型酿酒酵母INVScl中进行表达。GC分析表明,该序列在酵母中获得了表达,表达产物表现出△6-脂肪酸脱氢酶的酶学活性,能将底物亚油酸转化为γ-亚麻酸。新生成的γ-亚麻酸占酵母细胞总脂肪酸的12.25%。  相似文献   

11.
△^6-脂肪酸脱氢酶基因是形成γ-亚麻酸的关键酶。从含有高山被孢霉△^6-脂肪酸脱氢酶基因的重组质粒pT-MACL6中,酶切出1.4kb的目的片段,亚克隆到大肠杆菌和酿酒酵母的穿梭表达载体pYES2.0,在大肠杆菌中筛选到含有目的基因的重组质粒pYMAD6,用醋酸昔方法转化到酿洒酵母的缺陷型菌株INCSc1中,在SC-Ura合成培养基中,选择得到酿酒酵母工程株YMAD6。在合适的培养基及培养条件下,加入外源底物亚油酸,经半乳糖诱导后,收集菌体。通过GC-MS对酵母工程株进行脂肪酸色谱分析,结果表明,产生了31.6%的γ-亚麻酸,边是迄今为止,国内外△^6-脂肪酸脱氢酶基因在酿酒酵母中表达量最高的报道。  相似文献   

12.
Δ^6-脂肪酸脱氢酶是一种膜整合蛋白,也是多不饱和脂肪酸合成途径中的限速酶。在前期工作中,通过RT-PCR和RACE技术,从少根根霉NK300037中克隆到一个潜在编码Δ^6-脂肪酸脱氢酶的序列,序列和功能分析结果表明该序列具有一个长度为1377bp、编码由458个氨基酸组成、大小为52kD的新的Δ^6-肪酸脱氢酶基因。把少根根霉Δ^6-脂肪酸脱氢酶基因(RAD6)亚克隆到表达载体pPIC3.5K,构建重组表达载体pPICRAD6,并转化到毕赤酵母菌株GS115进行表达。提取酵母细胞总脂肪酸和进行甲酯化,经气相色谱和气相色谱-质谱连用分析表明,目的基因的编码产物能将C16:1、C17:1、C18:1、亚油酸和α-亚麻酸在△6和7位间特异性脱氢而引入一个新的双键,生成更高不饱和的脂肪酸,该催化反应没有链长特异性,只有键位特异性。此外,按Kozak序列特点,改变目的基因转译起始密码子周边序列结构,并把改变后序列导入毕赤酵母GS115中进行功能表达分析,结果表明在毕赤酵母中这种改变同样能提高目的基因的表达水平。综合所有分析结果表明,巴斯德毕赤酵母更适合用来综合分析Δ^6-脂肪酸脱氢酶基因的功能。  相似文献   

13.
14.
Δ8途径是合成多不饱和脂肪酸的替代途径,Δ8-脂肪酸脱氢酶是该途径的关键酶之一。根据已报道的Δ8-脂肪酸脱氢酶基因设计引物,分别从小眼虫藻基因组DNA和cDNA中扩增得到该基因片段,序列分析表明:结构基因长1 266 bp,编码421个氨基酸;该基因没有内含子,比已经报道的Δ8-脂肪酸脱氢酶基因长6 bp,并且N末端序列也有所不同。利用酿酒酵母的载体pYES2.0构建Δ8-脂肪酸脱氢酶表达载体pYEFD,并转化到营养缺陷型酿酒酵母菌株INVSc1中,在选择培养基中筛选得到酿酒酵母转化菌株YD8。YD8在合适的培养条件下,添加外源底物二十碳二烯酸和二十碳三烯酸并诱导基因表达。脂肪酸甲酯气相色谱分析表明小眼虫藻Δ8-脂肪酸脱氢酶基因在酿酒酵母中获得了高效表达,将二十碳二烯酸和二十碳三烯酸分别转化成二高-γ-亚麻酸和二十碳四烯酸,其底物转化率分别达到了31.2%和46.3%。  相似文献   

15.
Due to increasing demand for natural sources of both polyunsaturated fatty acids (PUFAs) and beta-carotene, 28 Zygomycetes fungal soil isolates were screened for their potential to synthesize these biologically active compounds. Although all fungi produced C18 PUFAs, only nine strains also formed beta-carotene. Although Actinomucor elegans CCF 3218 was the best producer of gamma-linolenic acid (GLA) (251 mg/L), Umbelopsis isabellina CCF 2412 was found to be the most valuable fungus because of the dual production of GLA (217 mg/L) and beta-carotene (40.7 mg/L). The calculated ratio of formed PUFAs provided new insight into activities of individual fatty acid desaturases involved in biosynthetic pathways for various types of PUFAs. The maximal activity of delta-9 desaturase was accompanied by high accumulation of storage lipids in fungal cells. On the other hand, maximal activity of delta-15 desaturase was found in strains synthesizing low amounts of oleic acid due to diminished delta-9 desaturase. Activities of delta-6 desaturase showed competition for fatty acids engaged in n3, n6, and n9 biosynthetic pathways. Such knowledge about fatty acid desaturase activities provides new challenges for the regulation of biotechnological production of PUFAs by Zygomycetes fungi.  相似文献   

16.
用限制酶EcoRⅠ、KpnⅠ分别对雅致枝霉As3.2806基因组DNA进行消化,而后在低浓度条件下利用T4DNA连接酶使DNA自身环化。根据已知基因序列,设计一对长度为35nt的长反向引物和两对较短的引物,以基因组连接产物为模板,通过三轮嵌套式PCR反应,获得一长度约为4kb的扩增片段。经序列测定表明得到了Δ6-脂肪酸脱氢酶基因上游序列约为1.3kb,初步序列分析显示该序列为一潜在的启动子序列。  相似文献   

17.
γ—亚麻酸(GLA)是人体和动物饮食中具有营养作用的重要的多烯不饱和脂肪酸,在大多数油料作物种子中不含有GLA,而只含有其前体物亚油酸,只有少数油料植物种子中含有GLA,如夜来香(Oenothera spp),琉璃苣(Borago officinalis)等。△^6—脂肪酸脱氢酶可将亚油酸转化为γ—亚麻酸,为了能够在传统的油料作物种子中产生GLA,我们将从深黄被孢霉中克隆的△^6—脂肪酸脱氢酶基因,与植物表达载体pGA643连接,构建了重组质粒pGAM—ICL6,将其通过农杆菌介导法,导入模式植物烟草中。经PCR和Southern杂交分析表明该基因已导入并整合到烟草的基因组中,Northern杂交结果表明该基因在转基因烟草的mRNA水平上获得表达。对转基因植株进行脂肪酸分析,结果显示,GLA和十八碳四烯酸(OTA)分别占总脂肪酸含量的19.7%和3.5%。  相似文献   

18.
A peripheral component of the delta 6-fatty acid-desaturase system of rat liver microsomes has been isolated from the cytosol by ultracentrifugation at a saline density of 1.26 g/ml. It exhibited lipoprotein characteristics with an approximate protein/lipid ratio of 1.22 and free fatty acids and phosphatidylcholine as its main lipid components. Linoleic acid desaturation activity diminished in washed microsomes, since they lost the adsorbed cytosolic fraction. Addition of the factor reactivated the reaction and the recovery was dependent on the concentration of the factor in the medium. Linoleic acid and linoleyl-CoA were bound by the cytosolic fraction. However, the transport of substrate to the desaturase was not apparently a main function of the cytosolic fraction, since transport occurred equally in the absence of the factor. Moreover, the solubilization of linoleyl-CoA was not enhanced and the free monomeric concentration was not altered by the presence of the cytosolic fraction. In addition, the factor did not divert delta 6-desaturase substrate to or from other metabolic pathways such as esterification to phospholipids. gamma-Linolenic acid produced by delta 6-desaturation of linoleic acid in the microsomes inhibited the desaturase, but it was removed by the factor from the membrane towards the cytosol, preventing the inhibition. The anti-inhibitory effect of the cytosolic factor was blockaded by addition of columbinic acid or gamma-linolenic acid to the factor. Moreover, the inhibitory effect of arachidonic acid was not prevented by addition of the cytosolic fraction. These results suggest that the cytosolic fraction studied would optimize the delta 6-desaturation of linoleic acid in vitro in rat liver microsomes by removal of the product, gamma-linolenic acid, as it is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号