首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Previously, we reported that flagellar excision in Chlamydomonas reinhardtii is mediated by an active process whereby microtubules are severed at select sites within the flagellar-basal body transition zone (Sanders, M. A., and J. L. Salisbury. 1989. J. Cell Biol. 108:1751- 1760). At the time of flagellar excision, stellate fibers of the transition zone contract and displace the microtubule doublets of the axoneme inward. The resulting shear force and torsional load generated during inward displacement leads to microtubule severing immediately distal to the central cylinder of the transition zone. In this study, we have used a detergent-extracted cell model of Chlamydomonas that allows direct experimental access to the molecular machinery responsible for microtubule severing without the impediment of the plasma membrane. We present four independent lines of experimental evidence for the essential involvement of centrin-based stellate fibers of the transition zone in the process of flagellar excision: (a) Detergent-extracted cell models excise their flagella in response to elevated, yet physiological, levels of free calcium. (b) Extraction of cell models with buffers containing the divalent cation chelator EDTA leads to the disassembly of centrin-based fibers and to the disruption of transition zone stellate fiber structure. This treatment results in a complete loss of flagellar excision competence. (c) Three separate anti-centrin monoclonal antibody preparations, which localize to the stellate fibers of the transition zone, specifically inhibit contraction of the stellate fibers and block calcium-induced flagellar excision, while control antibodies have no inhibitory effect. Finally, (d) cells of the centrin mutant vfl-2 (Taillon, B., S. Adler, J. Suhan, and J. Jarvik. 1992. J. Cell Biol. 119:1613-1624) fail to actively excise their flagella following pH shock in living cells or calcium treatment of detergent-extracted cell models. Taken together, these observations demonstrate that centrin-based fiber contraction plays a fundamental role in microtubule severing at the time of flagellar excision in Chlamydomonas.  相似文献   

2.
The axoneme central apparatus is thought to control flagellar/ciliary waveform and maintain the structural integrity of the axoneme, but proteins involved in these processes have not been fully elucidated. Moreover the network of interactions among them that allows these events to take place in a compact space has not been defined. PF6, a component of the Chlamydomonas central apparatus, is localized to the 1a projection of the C1 microtubule. Mutations in the Chlamydomonas PF6 gene result in flagellar paralysis. We characterized human and murine orthologues of PF6. The murine Pf6 gene is expressed in a pattern consistent with a role in flagella and cilia, and the PF6 protein is indeed localized to the central apparatus of the sperm flagellar axoneme. We discovered that a portion of PF6 associates with the mammalian orthologue of Chlamydomonas PF16 (sperm-associated antigen 6 (SPAG6)), another central apparatus protein that is localized to the C1 microtubule in algae. A fragment of PF6 corresponding to the PF6 domain that interacts with SPAG6 in yeast two-hybrid assays and colocalizes with SPAG6 in transfected cells was missing from epididymal sperm of SPAG6-deficient mice. SPAG6 binds to the mammalian orthologue of PF20, which in Chlamydomonas is located in bridges connecting the C2 and C1 microtubules. Thus, PF6, SPAG6, and PF20 form a newly identified network that links together components of the axoneme central apparatus and presumably participates in its dynamic regulation of ciliary and flagellar beat.  相似文献   

3.
In addition to their role in nucleating the assembly of axonemal microtubules, basal bodies often are associated with a microtubule organizing center (MTOC) for cytoplasmic microtubules. In an effort to define molecular components of the basal body apparatus in Chlamydomonas reinhardtii, genomic and cDNA clones encoding gamma-tubulin were isolated and sequenced. The gene, present in a single copy in the Chlamydomonas genome, encodes a protein with a predicted molecular mass of 52,161 D and 73% and 65% conservation with gamma-tubulin from higher plants and humans, respectively. To examine the distribution of gamma-tubulin in cells, a polyclonal antibody was raised against two peptides contained within the protein. Immunoblots of Chlamydomonas proteins show a major cross-reaction with a protein of Mr 53,000. In Chlamydomonas cells, the antibody stains the basal body apparatus as two or four spots at the base of the flagella and proximal to the microtubule rootlets. During cell division, two groups of fluorescent dots separate and localize to opposite ends of the mitotic apparatus. They then migrate during cleavage to positions known to be occupied by basal bodies. Changes in gamma-tubulin localization during the cell cycle are consistent with a role for this protein in the nucleation of microtubules of both the interphase cytoplasmic array and the mitotic spindle. Immunogold labeling of cell sections showed that gamma-tubulin is closely associated with the basal bodies. The flagellar transition region was also labeled, possibly indicating a role for gamma-tubulin in assembly of the central pair microtubules of the axoneme.  相似文献   

4.
《The Journal of cell biology》1994,125(6):1313-1326
The kinesin superfamily of mechanochemical proteins has been implicated in a wide variety of cellular processes. We have begun studies of kinesins in the unicellular biflagellate alga, Chlamydomonas reinhardtii. A full-length cDNA, KLP1, has been cloned and sequenced, and found to encode a new member of the kinesin superfamily. An antibody was raised against the nonconserved tail region of the Klp1 protein, and it was used to probe for Klp1 in extracts of isolated flagella and in situ. Immunofluorescence of whole cells indicated that Klp1 was present in both the flagella and cell bodies. In wild-type flagella, Klp1 was found tightly to the axoneme; immunogold labeling of wild-type axonemal whole mounts showed that Klp1 was restricted to one of the two central pair microtubules at the core of the axoneme. Klp1 was absent from the flagella of mutants lacking the central pair microtubules, but was present in mutant flagella from pf16 cells, which contain an unstable C1 microtubule, indicating that Klp1 was bound to the C2 central pair microtubule. Localization of Klp1 to the C2 microtubule was confirmed by immunogold labeling of negatively stained and thin-sectioned axonemes. These findings suggest that Klp1 may play a role in rotation or twisting of the central pair microtubules.  相似文献   

5.
6.
Flagellar dynein activity is regulated by phosphorylation. One critical phosphoprotein substrate in Chlamydomonas is the 138-kDa intermediate chain (IC138) of the inner arm dyneins (Habermacher, G., and Sale, W. S. (1997) J. Cell Biol. 136, 167-176). In this study, several approaches were used to determine that casein kinase I (CKI) is physically anchored in the flagellar axoneme and regulates IC138 phosphorylation and dynein activity. First, using a videomicroscopic motility assay, selective CKI inhibitors rescued dynein-driven microtubule sliding in axonemes isolated from paralyzed flagellar mutants lacking radial spokes. Rescue of dynein activity failed in axonemes isolated from these mutant cells lacking IC138. Second, CKI was unequivocally identified in salt extracts from isolated axonemes, whereas casein kinase II was excluded from the flagellar compartment. Third, Western blots indicate that within flagella, CKI is anchored exclusively to the axoneme. Analysis of multiple Chlamydomonas motility mutants suggests that the axonemal CKI is located on the outer doublet microtubules. Finally, CKI inhibitors that rescued dynein activity blocked phosphorylation of IC138. We propose that CKI is anchored on the outer doublet microtubules in position to regulate flagellar dynein.  相似文献   

7.
Cilia and flagella appear to be stable, terminal, microtubule-containing organelles, but they also elongate and shorten in response to a variety of signals. To understand mechanisms that regulate flagellar dynamics, Chlamydomonas cells with nongrowing flagella were labeled with (35)S, and flagella and basal body components were examined for labeled polypeptides. Maximal incorporation of label into the flagella occurred within 3 h. Twenty percent of the flagellar polypeptides were exchanged. These included tubulins, dyneins, and 80 other axonemal and membrane plus matrix polypeptides. The most stable flagellar structure is the PF-ribbon, which comprises part of the wall of each doublet microtubule and is composed of tubulin and three other polypeptides. Most (35)S was incorporated into the high molecular weight ribbon polypeptide, rib240, and little, if any, (35)S is incorporated into PF-ribbon-associated tubulin. Both wild-type (9 + 2) and 9 + 0 flagella, which lack central microtubules, exhibited nearly identical exchange patterns, so labeling is not due to turnover of relatively labile central microtubules. To determine if flagellar length is balanced by protein exchange, (35)S incorporation into disassembling flagella was examined, as was exchange in flagella in which microtubule assembly was blocked by colchicine. Incorporation of (35)S-labeled polypeptides was found to occur into flagellar axonemes during wavelength-dependent shortening in pf18 and in fla10 cells induced to shorten flagella by incubation at 33 degrees C. Colchicine blocked tubulin addition but did not affect the exchange of the other exchangeable polypeptides; nor did it induce any change in flagellar length. Basal bodies also incorporated newly synthesized proteins. These data reveal that Chlamydomonas flagella are dynamic structures that incorporate new protein both during steady state and as flagella shorten and that protein exchange does not, alone, explain length regulation.  相似文献   

8.
9.
ABSTRACT. Alcian blue acts as a secretagogue and chemorepellent in a variety of unicellular eukaryotes. We report that alcian blue stimulates flagellar excision and induction of RNA encoding flagellar proteins in Chlamydomonas reinhardtii . Flagellar excision by alcian blue is dependent on extracellular Ca2+ and is blocked by La3+, ruthenium red, and neomycin, and so is similar to flagellar excision by acid shock. However, the adf-l mutant excises its flagella following alcian blue treatment, but not following acid shock, thus genetically distinguishing alcian-blue-induced excision from acid-shock-induced excision. Wild-type, but not adf-1, cells regrow their flagella in the continued presence of alcian blue. Wild-type cells that regrow flagella in the presence of alcian blue fail to excise their flagella in response to either increased concentrations of alcian blue or to acid shock. Alcian blue treatment of cells also induces RNA encoding flagellar components, but in a manner distinct from other means of stimulation. These results suggest that treating Chlamydomonas with the secretagogue alcian blue initiates a Ca2+ influx pathway and that prolonged treatment with alcian blue desensitizes the acid-shock-activated Ca2+ influx pathway to acid treatment. Alcian blue will thus be a useful excitatory ligand in future studies of receptor-mediated Ca2+ signaling in the Chlamydomonas flagellar regeneration system.  相似文献   

10.
The interphase flagellar apparatus of the green alga Chlorogonium elongatum resembles that of Chlamydomonas reinhardtii in the possession of microtubular rootlets and striated fibers. However, Chlorogonium, unlike Chlamydomonas, retains functional flagella during cell division. In dividing cells, the basal bodies and associated structures are no longer present at the flagellar bases, but have apparently detached and migrated towards the cell equator before the first mitosis. The transition regions remain with the flagella, which are now attached to a large apical mitochondrion by cross-striated filamentous components. Both dividing and nondividing cells of Chlorogonium propagate asymmetrical ciliary-type waveforms during forward swimming and symmetrical flagellar-type waveforms during reverse swimming. High-speed cinephotomicrographic analysis indicates that waveforms, beat frequency, and flagellar coordination are similar in both cell types. This indicates that basal bodies, striated fibers, and microtubular rootlets are not required for the initiation of flagellar beat, coordination of the two flagella, or determination of flagellar waveform. Dividing cells display a strong net negative phototaxis comparable to that of nondividing cells; hence, none of these structures are required for the transmission or processing of the signals involved in phototaxis, or for the changes in flagellar beat that lead to phototactic turning. Therefore, all of the machinery directly involved in the control of flagellar motion is contained within the axoneme and/or transition region. The timing of formation and the positioning of the newly formed basal structures in each of the daughter cells suggests that they play a significant role in cellular morphogenesis.  相似文献   

11.
Radial spokes of the eukaryotic flagellum extend from the A tubule of each outer doublet microtubule toward the central pair microtubules. In the paralyzed flagella mutant of Chlamydomonas pf14, a mutation in the gene for one of 17 polypeptides that comprise the radial spokes results in flagella that lack all 17 spoke components. The defective gene product, radial spoke protein 3 (RSP3), is, therefore, pivotal to the assembly of the entire spoke and may attach the spoke to the axoneme. We have synthesized RSP3 in vitro and assayed its binding to axonemes from pf14 cells to determine if RSP3 can attach to spokeless axonemes. In vitro, RSP3 binds to pf14 axonemes, but not to wild-type axonemes or microtubules polymerized from purified chick brain tubulin. The sole axoneme binding domain of RSP3 is located within amino acids 1-85 of the 516 amino acid protein; deletion of these amino acids abolishes binding by RSP3. Fusion of amino acids 1-85 or 42-85 to an unrelated protein confers complete or partial binding activity, respectively, to the fusion protein. Transformation of pf14 cells with mutagenized RSP3 genes indicates that amino acids 18-87 of RSP3 are important to its function, but that the carboxy-terminal 140 amino acids can be deleted with little effect on radial spoke assembly or flagellar motility.  相似文献   

12.
Improved methods of specimen preparation and dual-axis electron tomography have been used to study the structure and organization of basal bodies in the unicellular alga Chlamydomonas reinhardtii. Novel structures have been found in both wild type and strains with mutations that affect specific tubulin isoforms. Previous studies have shown that strains lacking delta-tubulin fail to assemble the C-tubule of the basal body. Tomographic reconstructions of basal bodies from the delta-tubulin deletion mutant uni3-1 have confirmed that basal bodies contain mostly doublet microtubules. Our methods now show that the stellate fibers, which are present only in the transition zone of wild-type cells, repeat within the core of uni3-1 basal bodies. The distal striated fiber is incomplete in this mutant, rootlet microtubules can be misplaced, and multiflagellate cells have been observed. A suppressor of uni3-1, designated tua2-6, contains a mutation in alpha-tubulin. tua2-6; uni3-1 cells build both flagella, yet they retain defects in basal body structure and in rootlet microtubule positioning. These data suggest that the presence of specific tubulin isoforms in Chlamydomonas directly affects the assembly and function of both basal bodies and basal body-associated structures.  相似文献   

13.
To study the mechanisms responsible for the regulation of flagellar length, we examined the effects of colchicine and Cytochalasin D (CD) on the growth and maintenance of Chlamydomonas flagella on motile wild type cells as well as on pf 18 cells, whose flagella lack the central microtubules and are immobile. CD had no effect on the regeneration of flagella after deflagellation but it induced fully assembled flagella to shorten at an average rate of 0.03 microns-min. Cells remained fully motile in CD and even stubby flagella continued to move, indicating that flagellar shortening did not selectively disrupt machinery necessary for motility. To observe the effects of the drug on individual cells, pf 18 cells were treated with CD and flagella on cells were monitored by direct observation over a 5-hour period. Flagella on control pf 18 cells maintained their initial lengths throughout the experiment but flagella on CD-treated cells exhibited periods of elongation, shortening, and regrowth suggestive of the dynamic behavior of cytoplasmic microtubules observed in vitro and in vitro. Cells behaved individually, with no two cells exhibiting the same flagellar behavior at any given time although both flagella on any single cell behaved identically. The rate of drug-induced flagellar shortening and elongation in pf 18 cells varied from 0.08 to 0.17 microns-min-1, with each event occurring over 10-60-min periods. Addition of colchicine to wild type and pf 18 cells induced flagella to shorten at an average rate of 0.06 microns-min-1 until the flagella reached an average of 73% of their initial length, after which they exhibited no further shortening or elongation. Cells treated with colchicine and CD exhibited nearly complete flagellar resorption, with little variation in flagellar length among cells. The effects of these drugs were reversible and flagella grew to normal stable lengths after drug removal. Taken together, these results show that the distal half to one-third of the Chlamydomonas flagellum is relatively unstable in the presence of colchicine but that the proximal half to two-thirds of the flagellum is stable to this drug. In contrast to colchicine, CD can induce nearly complete flagellar microtubule disassembly as well as flagellar assembly. Flagellar microtubules must, therefore, be inherently unstable, and flagellar length is stabilized by factors that are sensitive, either directly or indirectly, to the effects of CD.  相似文献   

14.
Thin section electron micrographs of rapidly fixed Chlamydomonas cells were used to establish a relationship between flagellar bends and orientation of the central pair microtubule complex. Using conditions that preserve flagellar waveforms during both forward swimming (asymmetric bends) and backward swimming (symmetric bends), we found that central pair orientation differs in bent regions and straight regions. During forward swimming, a plane through the two central pair microtubules is parallel to the bend plane throughout principal bends, in both effective stroke and recovery stroke phases of the beat cycle. In these curved segments, the C1 microtubule always faces the outer edge of the curve. This parallel orientation twists in straight regions both proximal and distal to bends. During backward swimming episodes induced by photoshock, when Chlamydomonas flagella beat with principal and reverse bends of similar magnitude, the central pair twists by 180 degrees between successive bends. These observations support a model in which central pair orientation in Chlamydomonas is linked to doublet-specific dynein activation, and bend propagation is linked to rotation of the central pair complex.  相似文献   

15.
Deflagellation of Chlamydomonas reinhardtii, and other flagellated and ciliated cells, is a highly specific process that involves signal-induced severing of the outer doublet microtubules at a precise site in the transition region between the axoneme and basal body. Although the machinery of deflagellation is activated by Ca2+, the mechanism of microtubule severing is unknown. Severing of singlet microtubules has been observed in vitro to be catalyzed by katanin, a heterodimeric adenosine triphosphatase that can remove tubulin subunits from the walls of stable microtubules. We found that purified katanin induced an ATP-dependent severing of the Chlamydomonas axoneme. Using Western blot analysis and indirect immunofluorescence, we demonstrate that Chlamydomonas expresses a protein that is recognized by an anti-human katanin antibody and that this protein is localized, at least in part, to the basal body complex. Using an in vitro severing assay, we show that the protein(s) responsible for Ca2+-activated outer doublet severing purify with the flagellar-basal body complex. Furthermore, deflagellation of purified flagellar-basal body complexes is significantly blocked by the anti-katanin antibody. Taken together, these data suggest that a katanin-like mechanism may mediate the severing of the outer doublet microtubules during Chlamydomonas deflagellation.  相似文献   

16.
Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro acetylation of sea urchin and Chlamydomonas cytoplasmic tubulins in crude extracts. Of all the acetylated polypeptides in the extracts, only alpha-tubulin became antigenic. Among Chlamydomonas tubulin isoforms, the antibodies recognize only the axonemal alpha-tubulin isoform acetylated in vivo on the epsilon-amino group of lysine(s) (L'Hernault, S.W., and J.L. Rosenbaum, 1985, Biochemistry, 24:473-478). The antibodies do not recognize unmodified axonemal alpha-tubulin, unassembled alpha-tubulin present in a flagellar matrix-plus-membrane fraction, or soluble, cytoplasmic alpha-tubulin from Chlamydomonas cell bodies. The antigen was found in protein fractions that contained axonemal microtubules from a variety of sources, including cilia from sea urchin blastulae and Tetrahymena, sperm and testis from Drosophila, and human sperm. In contrast, the antigen was not detected in preparations of soluble, cytoplasmic tubulin, which would not have contained tubulin from stable microtubule arrays such as centrioles, from unfertilized sea urchin eggs, Drosophila embryos, and HeLa cells. Although the acetylated alpha-tubulin recognized by the antibodies is present in axonemes from a variety of sources and may be necessary for axoneme formation, it is not found exclusively in any one subset of morphologically distinct axonemal microtubules. The antigen was found in similar proportions in fractions from sea urchin sperm axonemes enriched for central pair or outer doublet B or outer doublet A microtubules. Therefore the acetylation of alpha-tubulin does not provide the mechanism that specifies the structure of any one class of axonemal microtubules. Preliminary evidence indicates that acetylated alpha-tubulin is not restricted to the axoneme. The antibodies described in this report may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.  相似文献   

17.
Mutations in human CEP290 cause cilia-related disorders that range in severity from isolated blindness to perinatal lethality. Here, we describe a Chlamydomonas reinhardtii mutant in which most of the CEP290 gene is deleted. Immunoelectron microscopy indicated that CEP290 is located in the flagellar transition zone in close association with the prominent microtubule–membrane links there. Ultrastructural analysis revealed defects in these microtubule–membrane connectors, resulting in loss of attachment of the flagellar membrane to the transition zone microtubules. Biochemical analysis of isolated flagella revealed that the mutant flagella have abnormal protein content, including abnormal levels of intraflagellar transport proteins and proteins associated with ciliopathies. Experiments with dikaryons showed that CEP290 at the transition zone is dynamic and undergoes rapid turnover. The results indicate that CEP290 is required to form microtubule–membrane linkers that tether the flagellar membrane to the transition zone microtubules, and is essential for controlling flagellar protein composition.  相似文献   

18.
Summary Isolated transverse flagella ofPeridinium inconspicuum (Dinophyceae) undergo a rapid Ca2+-induced (50M Ca2+) contraction in the absence of exogenous ATP. Longitudinal flagella from the same species do not contract under these conditions. Contraction leads to a supercoiling of the axoneme and a shortening of the paraxonemal fiber that accompanies the axoneme over most of its length. Using a polyclonal antibody generated against centrin, a 20 kDa Ca2+-modulated contractile protein of striated flagellar roots of the green flagellateTetraselmis striata, we have found that the paraxonemal fiber in transverse flagella of three taxa ofDinophyceae is immunoreactive by indirect immunofluorescence. The localization of the antigen in the paraxonemal fiber of transverse flagella was confirmed by two-colour double immunofluorescence using monoclonal mouse-anti--tubulin for identification of the axoneme. No structure was immunoreactive to anticentrin in the longitudinal flagella of all taxa. Electrophoretic and immunoblot analysis of isolated flagella ofP. inconspicuum show that the antigen is a 21 kDa protein, indicating that it is either centrin or a closely related protein. We conclude that centrin confers contractility to the transverse flagellum of dinoflagellates and possibly to other contractile eukaryotic flagella.Abbreviations ASP-H artificial seawater medium with Hepes-buffer - BSA bovine serum albumine - DTT dithiothreitol - EGTA ethylene glycol bis(2-amino-ethylether)tetraacetic acid - FITC fluorescein isothiocyanate - MT buffer microtubule stabilizing buffer - PBS phosphate buffered saline - SDS sodium dodecyl sulfate - TLCK N-p-tosyl-l-lysine chloromethyl ketone - TRITC tetramethylrhodamine isothiocyanate  相似文献   

19.
The biflagellate alga Chlamydomonas reinhardi was studied with the light and electron microscopes to determine the behavior of flagella in the living cell and the structure of the basal apparatus of the flagella. During normal forward swimming the flagella beat synchronously in the same plane, as in the human swimmer's breast stroke. The form of beat is like that of cilia. Occasionally cells swim backward with the flagella undulating and trailing the cell. Thus the same flagellar apparatus produces two types of motion. The central pair of fibers of both flagella appear to lie in the same plane, which coincides with the plane of beat. The two basal bodies lie in a V configuration and are joined at the top by a striated fiber and at the bottom by two smaller fibers. From the area between the basal bodies four bands of microtubules, each containing four tubules, radiate in an X-shaped pattern, diverge, and pass under the cell membrane. Details of the complex arrangement of tubules near the basal bodies are described. It seems probable that the connecting fibers and the microtubules play structural roles and thereby maintain the alignment of the flagellar apparatus. The relation of striated fibers and microtubules to cilia and flagella is reviewed, particularly in phytoflagellates and protozoa. Structures observed in the transitional region between the basal body and flagellar shaft are described and their occurrence is reviewed. Details of structure of the flagellar shaft and flagellar tip are described, and the latter is reviewed in detail.  相似文献   

20.
In the flagellate green alga Chlamydomonas reinhardtii the Ca(2+)-binding EF-hand protein centrin is encoded by a single-copy gene. Previous studies have localized the protein to four distinct structures in the flagellar apparatus: the nucleus-basal body connector, the distal connecting fiber, the flagellar transitional region, and the axoneme. To explain the disjunctive distribution of centrin, the interaction of centrin with as yet unknown specific centrin-binding proteins has been implied. Here, we demonstrate using serial section postembedding immunoelectron microscopy of isolated cytoskeletons that centrin is located in additional structures (transitional fibers and basal body lumen) and that the centrin-containing structures of the basal apparatus are likely part of a continuous filamentous scaffold that extends from the nucleus to the flagellar bases. In addition, we show that centrin is located in the distal lumen of the basal body in a rotationally asymmetric structure, the V-shaped filament system. This novel centrin-containing structure has also been detected near the distal end of the probasal bodies. Taken together, these results suggest a role for a rotationally asymmetric centrin "seed" in the growth and development of the centrin scaffold following replication of the basal apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号