首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
2.
Cytidine 5(')-triphosphate (CTP) synthase (EC 6.4.3.2) catalyzes the transfer of an amino group to the 4 position of uridine 5(')-triphosphate (UTP) to yield CTP. The reaction proceeds by activation of the base moiety of UTP by adenosine 5(')-triphosphate (ATP)-dependent phosphorylation. The activated intermediate reacts with NH(3) in the solution or is obtained by hydrolysis of glutamine. The Lactococcus lactis CTP synthase shows significant differences from the enzymes from Escherichia coli, yeast, and mammals. One is the apparent stability of the L. lactis CTP synthase tetramer in the absence of the nucleotides ATP and UTP. This condition causes the E. coli, yeast, and mammal enzymes to dissociate into dimers. However, the L. lactis CTP synthase shows substrate inhibition by NH(4)Cl that coincides with the range of NH(4)Cl concentrations that apparently dissociates tetrameric enzyme into dimers. Even though regular substrate inhibition was observed with NH(4)Cl when the ionic strength was held constant, a significant part of the inhibition could be shown to be due to the increase in ionic strength with increasing substrate concentration. Since the substrate inhibition by NH(4)Cl was relieved by increasing the equimolar ATP and UTP concentrations, it appeared that the substrate nucleotides stabilized the tetramer in a manner similar to that found in the absence of salt for other CTP synthases. In contrast to the suggested hydrophobic nature of the tetramer interactions in E. coli CTP synthase, the dissociation of the L. lactis CTP synthase tetramer in response to an increase in ionic strength suggests that the tetramer is stabilized by ionic interactions.  相似文献   

3.
Neuronal nitric oxide synthase: prototype for pulsed enzymology   总被引:1,自引:0,他引:1  
Salerno JC 《FEBS letters》2008,582(10):1395-1399
  相似文献   

4.
Many nucleotides in rRNAs are modified. We devised a method to locate 2(')-O-methyl nucleotide residues using a conventional DNA sequencer. We found 38 2(')-O-methyl nucleotides in the 26S rRNA of Caenorhabditis elegans using this method. Fourteen of the 38 residues are conserved in both human and yeast rRNAs and 14 residues are conserved in either human or yeast rRNA. The remaining 10 nucleotides are uniquely methylated in C. elegans 26S rRNA. We searched the C. elegans genomic sequence for small nucleolar RNAs (snoRNAs), which guide the methylation of ribose residues, and predicted 18 snoRNA sequences that are expected to guide the methylation of some of these nucleotide residues.  相似文献   

5.
The 5' end of eukaryotic mRNA carries a N(7)-methylguanosine residue linked by a 5'-5' triphosphate bond. This cap moiety ((7m)GpppN) is an essential RNA structural modification allowing its efficient translation, limiting its degradation by cellular 5' exonucleases and avoiding its recognition as "nonself" by the innate immunity machinery. In vitro synthesis of capped RNA is an important bottleneck for many biological studies. Moreover, the lack of methods allowing the synthesis of large amounts of RNA starting with a specific 5'-end sequence have hampered biological and structural studies of proteins recognizing the cap structure or involved in the capping pathway. Due to the chemical nature of N(7)-methylguanosine, the synthesis of RNAs possessing a cap structure at the 5' end is still a significant challenge. In the present work, we combined a chemical synthesis method and an enzymatic methylation assay in order to produce large amounts of RNA oligonucleotides carrying a cap-0 or cap-1. Short RNAs were synthesized on solid support by the phosphoramidite 2'-O-pivaloyloxymethyl chemistry. The cap structure was then coupled by the addition of GDP after phosphorylation of the terminal 5'-OH and activation by imidazole. After deprotection and release from the support, GpppN-RNAs or GpppN(2'-Om)-RNAs were purified before the N(7)-methyl group was added by enzymatic means using the human (guanine-N(7))-methyl transferase to yield (7m)GpppN-RNAs (cap-0) or (7m)GpppN(2'-Om)-RNAs (cap-1). The RNAs carrying different cap structures (cap, cap-0 or, cap-1) act as bona fide substrates mimicking cellular capped RNAs and can be used for biochemical and structural studies.  相似文献   

6.
A major component of the Entamoeba cyst wall is chitin, a homopolymer of beta-(1,4)-linked N-acetyl-D-glucosamine. Polymerization of chitin requires the presence of active chitin synthases (CHS), a group of enzymes belonging to the family of beta-glycosyl transferases. CHS have been described for fungi, insects, and nematodes; however, information is lacking about the structure and expression of this class of enzymes in protozoons such as Entamoeba. In this study, the primary structures of two putative E. histolytica CHS (EhCHS-1 and EhCHS-2) were determined by gene cloning and homologous proteins were identified in databases from E. dispar and the reptilian parasite E. invadens. The latter constitutes the widely used model organism for the study of Entamoeba cyst development. The two ameba enzymes revealed between 23% and 33% sequence similarity to CHS from other organisms with full conservation of all residues critically important for CHS activity. Interestingly, EhCHS-1 and EhCHS-2 differed substantially in their predicted molecular weights (73 kD vs. 114 kD) as well as in their isoelectric points (5.04 vs. 8.05), and homology was restricted to a central stretch of about 400 amino acid residues containing the catalytic domain. Outside the catalytic domain, EhCHS-1 was predicted to have seven transmembrane helices (TMH) of which the majority is located within the C-terminal part, resembling the situation found in yeast; whereas, EhCHS-2 is structurally related to nematode or insect chitin synthases, as it contained 17 predicted TMHs of which the majority is located within the N-terminal part of the molecule. Northern blot analysis revealed that genes corresponding to CHS-1 and CHS-2 are not expressed in Entamoeba trophozoites, but substantial amounts of CHS-1 and CHS-2 RNA were present 4 to 8 hours after induction of cyst formation by glucose deprivation of E. invadens. The time-courses of expression differed slightly between the two ameba CHS genes, as in contrast to CHS-1 RNA, expression of CHS-2 RNA was more transient and no plateau was observed between 8 and 16 hours of encystation. However, both CHS RNAs were no longer detectable after 48 hours when most of the cells had been transformed into mature cysts.  相似文献   

7.
Nucleic acids isolated from dormant and germinated Botryodiplodia theobromae pycnidiospores contain five distinct species of RNA. They include two ribosomal species, two ribosomal-associated species and transfer RNAs. Sedimentation coefficients of 25.1S and 18S were obtained for the two ribosomal RNA species and 5.8S and 5S for the two ribosomal-associated RNA components. Molecular weights of 1.20, 0.67, 0.054 and 0.035x106 daltons were obtained after formaldehyde treatment and electrophoresis on polyacrylamide gels for these same four RNAs. Methylated nucleotides were present in the transfer RNAs and large and small ribosomal RNAs; in contrast 5.8S and 5S RNAs contained few methylated nucleotides. In addition to the 5 distinct RNA species, polyadenylate-containing RNA was isolated from both dormant and germinated spores.Published with the approval of the Director as paper no. 5006, Journal Series, Nebraska Agricultural Experiment Station. The work was conducted under Nebraska Agricultural Experiment Station Project no. 21-17.  相似文献   

8.
9.
The complete nucleotide sequences of the Haemophilus influenzae and Mycoplasma genitalium genomes and the partially sequenced Escherichia coli chromosome were analyzed to identify open reading frames (ORFs) likely to encode RNA modifying enzymes. The protein sequences of known RNA modifying enzymes from three families--m5U methyltransferases, psi synthases and 2'-O methyltransferases--were used as probes to search sequence databases for homologs. ORFs identified as homologous to the initial probes were retrieved and used as new probes against the databases in an iterative manner until no more homologous ORFs could be identified. Using this approach, we have identified two new m5U methyltransferases, seven new psi synthases and four new 2'-O methyltransferases in E. coli. Many of the ORFs found in E.coli have direct genetic counterparts (orthologs) in one or both of H.influenzae and M.genitalium. Since there is a near-complete knowledge of RNA modifications in E.coli, functional activities of the proteins encoded by the identified ORFs were proposed based on the level of conservation of the ORFs and the modified nucleotides.  相似文献   

10.
N6-methyladenosine (m6A) is the most abundant modification in mammalian mRNA and long noncoding RNA (lncRNA). Recent discoveries of two m6A demethylases and cell-type and cell-state-dependent m6A patterns indicate that m6A modifications are highly dynamic and likely play important biological roles for RNA akin to DNA methylation or histone modification. Proposed functions for m6A modification include mRNA splicing, export, stability, and immune tolerance; but m6A studies have been hindered by the lack of methods for its identification at single nucleotide resolution. Here, we develop a method that accurately determines m6A status at any site in mRNA/lncRNA, termed site-specific cleavage and radioactive-labeling followed by ligation-assisted extraction and thin-layer chromatography (SCARLET). The method determines the precise location of the m6A residue and its modification fraction, which are crucial parameters in probing the cellular dynamics of m6A modification. We applied the method to determine the m6A status at several sites in two human lncRNAs and three human mRNAs and found that m6A fraction varies between 6% and 80% among these sites. We also found that many m6A candidate sites in these RNAs are however not modified. The precise determination of m6A status in a long noncoding RNA also enables the identification of an m6A-containing RNA structural motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号