首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A review of the literature revealed that a variety of methods are currently used for fitting net assimilation of CO2–chloroplastic CO2 concentration (A–Cc) curves, resulting in considerable differences in estimating the A–Cc parameters [including maximum ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate (Vcmax), potential light saturated electron transport rate (Jmax), leaf dark respiration in the light (Rd), mesophyll conductance (gm) and triose‐phosphate utilization (TPU)]. In this paper, we examined the impacts of fitting methods on the estimations of Vcmax, Jmax, TPU, Rd and gm using grid search and non‐linear fitting techniques. Our results suggested that the fitting methods significantly affected the predictions of Rubisco‐limited (Ac), ribulose 1,5‐bisphosphate‐limited (Aj) and TPU‐limited (Ap) curves and leaf photosynthesis velocities because of the inconsistent estimate of Vcmax, Jmax, TPU, Rd and gm, but they barely influenced the Jmax : Vcmax, Vcmax : Rd and Jmax : TPU ratio. In terms of fitting accuracy, simplicity of fitting procedures and sample size requirement, we recommend to combine grid search and non‐linear techniques to directly and simultaneously fit Vcmax, Jmax, TPU, Rd and gm with the whole A–Cc curve in contrast to the conventional method, which fits Vcmax, Rd or gm first and then solves for Vcmax, Jmax and/or TPU with Vcmax, Rd and/or gm held as constants.  相似文献   

2.
Worldwide measurements of nearly 130 C3 species covering all major plant functional types are analysed in conjunction with model simulations to determine the effects of mesophyll conductance (gm) on photosynthetic parameters and their relationships estimated from A/Ci curves. We find that an assumption of infinite gm results in up to 75% underestimation for maximum carboxylation rate Vcmax, 60% for maximum electron transport rate Jmax, and 40% for triose phosphate utilization rate Tu. Vcmax is most sensitive, Jmax is less sensitive, and Tu has the least sensitivity to the variation of gm. Because of this asymmetrical effect of gm, the ratios of Jmax to Vcmax, Tu to Vcmax and Tu to Jmax are all overestimated. An infinite gm assumption also limits the freedom of variation of estimated parameters and artificially constrains parameter relationships to stronger shapes. These findings suggest the importance of quantifying gm for understanding in situ photosynthetic machinery functioning. We show that a nonzero resistance to CO2 movement in chloroplasts has small effects on estimated parameters. A non‐linear function with gm as input is developed to convert the parameters estimated under an assumption of infinite gm to proper values. This function will facilitate gm representation in global carbon cycle models.  相似文献   

3.
Ozone is an air pollutant that negatively affects photosynthesis in woody plants. Previous studies suggested that ozone-induced reduction in photosynthetic rates is mainly attributable to a decrease of maximum carboxylation rate (Vcmax) and/or maximum electron transport rate (Jmax) estimated from response of net photosynthetic rate (A) to intercellular CO2 concentration (Ci) (A/Ci curve) assuming that mesophyll conductance for CO2 diffusion (gm) is infinite. Although it is known that Ci-based Vcmax and Jmax are potentially influenced by gm, its contribution to ozone responses in Ci-based Vcmax and Jmax is still unclear. In the present study, therefore, we analysed photosynthetic processes including gm in leaves of Siebold’s beech (Fagus crenata) seedlings grown under three levels of ozone (charcoal-filtered air or ozone at 1.0- or 1.5-times ambient concentration) for two growing seasons in 2016–2017. Leaf gas exchange and chlorophyll fluorescence were simultaneously measured in July and September of the second growing season. We determined the A, stomatal conductance to water vapor and gm, and analysed A/Ci curve and A/Cc curve (Cc: chloroplast CO2 concentration). We also determined the Rubisco and chlorophyll contents in leaves. In September, ozone significantly decreased Ci-based Vcmax. At the same time, ozone decreased gm, whereas there was no significant effect of ozone on Cc-based Vcmax or the contents of Rubisco and chlorophyll in leaves. These results suggest that ozone-induced reduction in Ci-based Vcmax is a result of the decrease in gm rather than in carboxylation capacity. The decrease in gm by elevated ozone was offset by an increase in Ci, and Cc did not differ depending on ozone treatment. Since Cc-based Vcmax was also similar, A was not changed by elevated ozone. We conclude that gm is an important factor for reduction in Ci-based Vcmax of Siebold’s beech under elevated ozone.  相似文献   

4.
Virtually all current estimates of the maximum carboxylation rate (Vcmax) of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) and the maximum electron transport rate (Jmax) for C3 species implicitly assume an infinite CO2 transfer conductance (gi). And yet, most measurements in perennial plant species or in ageing or stressed leaves show that gi imposes a significant limitation on photosynthesis. Herein, we demonstrate that many current parameterizations of the photosynthesis model of Farquhar, von Caemmerer & Berry (Planta 149, 78–90, 1980 ) based on the leaf intercellular CO2 concentration (Ci) are incorrect for leaves where gi limits photosynthesis. We show how conventional A–Ci curve (net CO2 assimilation rate of a leaf –An– as a function of Ci) fitting methods which rely on a rectangular hyperbola model under the assumption of infinite gi can significantly underestimate Vcmax for such leaves. Alternative parameterizations of the conventional method based on a single, apparent Michaelis–Menten constant for CO2 evaluated at Ci[Km(CO2)i] used for all C3 plants are also not acceptable since the relationship between Vcmax and gi is not conserved among species. We present an alternative A–Ci curve fitting method that accounts for gi through a non‐rectangular hyperbola version of the model of Farquhar et al. (1980 ). Simulated and real examples are used to demonstrate how this new approach eliminates the errors of the conventional A–Ci curve fitting method and provides Vcmax estimates that are virtually insensitive to gi. Finally, we show how the new A–Ci curve fitting method can be used to estimate the value of the kinetic constants of Rubisco in vivo is presented  相似文献   

5.
The aim of this study was to assess the temperature response of photosynthesis in rubber trees (Hevea brasiliensis Müll. Arg.) to provide data for process-based growth modeling, and to test whether photosynthetic capacity and temperature response of photosynthesis acclimates to changes in ambient temperature. Net CO2 assimilation rate (A) was measured in rubber saplings grown in a nursery or in growth chambers at 18 and 28°C. The temperature response of A was measured from 9 to 45°C and the data were fitted to an empirical model. Photosynthetic capacity (maximal carboxylation rate, V cmax, and maximal light driven electron flux, J max) of plants acclimated to 18 and 28°C were estimated by fitting a biochemical photosynthesis model to the CO2 response curves (AC i curves) at six temperatures: 15, 22, 28, 32, 36 and 40°C. The optimal temperature for A (T opt) was much lower in plants grown at 18°C compared to 28°C and nursery. Net CO2 assimilation rate at optimal temperature (A opt), V cmax and J max at a reference temperature of 25°C (V cmax25 and J max25) as well as activation energy of V cmax and J max (E aV and E aJ) decreased in individuals acclimated to 18°C. The optimal temperature for V cmax and J max could not be clearly defined from our response curves, as they always were above 36°C and not far from 40°C. The ratio J max25/V cmax25 was larger in plants acclimated to 18°C. Less nitrogen was present and photosynthetic nitrogen use efficiency (V cmax25/N a) was smaller in leaves acclimated to 18°C. These results indicate that rubber saplings acclimated their photosynthetic characteristics in response to growth temperature, and that higher temperatures resulted in an enhanced photosynthetic capacity in the leaves, as well as larger activation energy for photosynthesis.  相似文献   

6.
Responses of photosynthesis (A) to intercellular CO2 concentration (ci) in 2-year-old Pinus radiata D. Don seedlings were measured at a range of temperatures in order to parametrize a biophysical model of leaf photosynthesis. Increasing leaf temperature from 8 to 30°C caused a 4-fold increase in Vcmax, the maximum rate of carboxylation (10.7–43.3 μol m?2 s?1 and a 3-fold increase in Jmax, the maximum electron transport rate (20.5–60.2 μmol m ?2 s?1). The temperature optimum for Jmax was lower than that for Vcmax, causing a decline in the ratio Jmax:Vcmax from 2.0 to 1.4 as leaf temperature increased from 8 to 30°C. To determine the response of photosynthesis to leaf nitrogen concentration, additional measurements were made on seedlings grown under four nitrogen treatments. Foliar N concentrations varied between 0.36 and 1.27 mol kg?1, and there were linear relationships between N concentration and both Vcmax and Jmax. Measurements made throughout the crown of a plantation forest tree, where foliar N concentrations varied from 0.83 mol kg?1 near the base to 1.54 mol kg?1 near the leader, yielded similar relationships. These results will be useful in scaling carbon assimilation models from leaves to canopies.  相似文献   

7.
The effects of elevated atmospheric CO2 concentration on growth of forest tree species are difficult to predict because practical limitations restrict experiments to much shorter than the average life-span of a tree. Long-term, process-based computer models must be used to extrapolate from shorter-term experiments. A key problem is to ensure a strong flow of information between experiments and models. In this study, meta-analysis techniques were used to summarize a suite of photosynthetic model parameters obtained from 15 field-based elevated [CO2] experiments on European forest tree species. The parameters studied are commonly used in modelling photosynthesis, and include observed light-saturated photosynthetic rates (Amax), the potential electron transport rate (Jmax), the maximum Rubisco activity (Vcmax) and leaf nitrogen concentration on mass (Nm) and area (Na) bases. Across all experiments, light-saturated photosynthesis was strongly stimulated by growth in elevated [CO2]. However, significant down-regulation of photosynthesis was also observed; when measured at the same CO2 concentration, photosynthesis was reduced by 10–20%. The underlying biochemistry of photosynthesis was affected, as shown by a down-regulation of the parameters Jmax and Vcmax of the order of 10%. This reduction in Jmax and Vcmax was linked to the effects of elevated [CO2] on leaf nitrogen concentration. It was concluded that the current model is adequate to model photosynthesis in elevated [CO2]. Tables of model parameter values for different European forest species are given.  相似文献   

8.
Photosynthetic biochemical limitation parameters (i.e., Vcmax, Jmax and Jmax:Vcmax ratio) are sensitive to temperature and water availability, but whether these parameters in cold climate species at biome ecotones are positively or negatively influenced by projected changes in global temperature and water availability remains uncertain. Prior exploration of this question has largely involved greenhouse based short‐term manipulative studies with mixed results in terms of direction and magnitude of responses. To address this question in a more realistic context, we examined the effects of increased temperature and rainfall reduction on the biochemical limitations of photosynthesis using a long‐term chamber‐less manipulative experiment located in northern Minnesota, USA. Nine tree species from the boreal‐temperate ecotone were grown in natural neighborhoods under ambient and elevated (+3.4°C) growing season temperatures and ambient or reduced (≈40% of rainfall removed) summer rainfall. Apparent rubisco carboxylation and RuBP regeneration standardized to 25°C (Vcmax25°C and Jmax25°C, respectively) were estimated based on ACi curves measured in situ over three growing seasons. Our primary objective was to test whether species would downregulate Vcmax25°C and Jmax25°C in response to warming and reduced rainfall, with such responses expected to be greatest in species with the coldest and most humid native ranges, respectively. These hypotheses were not supported, as there were no overall main treatment effects on Vcmax25°C or Jmax25°C (p > .14). However, Jmax:Vcmax ratio decreased significantly with warming (p = .0178), whereas interactions between warming and rainfall reduction on the Jmax25°C to Vcmax25°C ratio were not significant. The insensitivity of photosynthetic parameters to warming contrasts with many prior studies done under larger temperature differentials and often fixed daytime temperatures. In sum, plants growing in relatively realistic conditions under naturally varying temperatures and soil moisture levels were remarkably insensitive in terms of their Jmax25°C and Vcmax25°C when grown at elevated temperatures, reduced rainfall, or both combined.  相似文献   

9.
We appraised the literature and described an approach to estimate the parameters of the Farquhar, von Caemmerer and Berry model using measured CO2 assimilation rate (A) and photosystem II (PSII) electron transport efficiency (Φ2). The approach uses curve fitting to data of A and Φ2 at various levels of incident irradiance (Iinc), intercellular CO2 (Ci) and O2. Estimated parameters include day respiration (Rd), conversion efficiency of Iinc into linear electron transport of PSII under limiting light [κ2(LL)], electron transport capacity (Jmax), curvature factor (θ) for the non‐rectangular hyperbolic response of electron flux to Iinc, ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) CO2/O2 specificity (Sc/o), Rubisco carboxylation capacity (Vcmax), rate of triose phosphate utilization (Tp) and mesophyll conductance (gm). The method is used to analyse combined gas exchange and chlorophyll fluorescence measurements on leaves of various ages and positions in wheat plants grown at two nitrogen levels. Estimated Sc/o (25 °C) was 3.13 mbar µbar?1; Rd was lower than respiration in the dark; Jmax was lower and θ was higher at 2% than at 21% O2; κ2(LL), Vcmax, Jmax and Tp correlated to leaf nitrogen content; and gm decreased with increasing Ci and with decreasing Iinc. Based on the parameter estimates, we surmised that there was some alternative electron transport.  相似文献   

10.
Leaf CO2 uptake (A) in C4 photosynthesis is limited by the maximum apparent rate of PEPc carboxylation (Vpmax) at low intercellular [CO2] (ci) with a sharp transition to a ci-saturated rate (Vmax) due to co-limitation by ribulose-1:5-bisphosphate carboxylase/oxygenase (Rubisco) and regeneration of PEP. The response of A to ci has been widely used to determine these two parameters. Vmax and Vpmax depend on different enzymes but draw on a shared pool of leaf resources, such that resource distribution is optimized, and A maximized, when Vmax and Vpmax are co-limiting. We collected published A/ci curves in 49 C4 species and assessed variation in photosynthetic traits between phylogenetic groups, and as a function of atmospheric [CO2]. The balance of Vmax-Vpmax varied among evolutionary lineages and C4 subtypes. Operating A was strongly Vmax-limited, such that re-allocation of resources from Vpmax towards Vmax was predicted to improve A by 12% in C4 crops. This would not require additional inputs but rather altered partitioning of existing leaf nutrients, resulting in increased water and nutrient-use efficiency. Optimal partitioning was achieved only in plants grown at pre-industrial atmospheric [CO2], suggesting C4 crops have not adjusted to the rapid increase in atmospheric [CO2] of the past few decades.  相似文献   

11.
Concurrent measurements of leaf gas exchange and on-line 13C discrimination were used to evaluate the CO2 conductance to diffusion from the stomatal cavity to the sites of carboxylation within the chloroplast (internal conductance; gi). When photon irradiance was varied it appeared that gi and/or the discrimination accompanying carboxylation also varied. Despite this problem, gi, was estimated for leaves of peach (Prunus persica), grapefruit (Citrus paradisi), lemon (C. limon) and macadamia (Macadamia integrifolia) at saturating photon irradiance. Estimates for leaves of C. paradisi, C. limon and M. integrifolia were considerably lower than those previously reported for well-nourished herbaceous plants and ranged from 1.1 to2.2μmol CO2 m?2 s?1 Pa?1, whilst P. persica had a mean value of 3.5 μmol CO2 m?2 s?1 Pa?1. At an ambient CO2 partial pressure of 33Pa, estimates of chloroplastic partial pressure of CO2 (Cc) using measurements of CO2 assimilation rate (A) and calculated values of gi, and of partial pressure of CO2 in the stomatal cavity (Cst) were as low as 11.2 Pa for C. limon and as high as 17.8Pa for peach. In vivo maximum rubisco activities (Vmax) were also determined from estimates of Cc. This calculation showed that for a given leaf nitrogen concentration (area basis) C. paradisi and C. limon leaves had a lower Vmax than P. persica, with C. paradisi and C. limon estimated to have only 10% of leaf nitrogen present as rubisco. Therefore, low CO2 assimilation rates despite high leaf nitrogen concentrations in leaves of the evergreen species examined were explained not only by a low Cc but also by a relatively low proportion of leaf nitrogen being used for photosynthesis. We also show that simple one-dimensional equations describing the relationship between leaf internal conductance from stomatal cavities to the sites of carboxylation and carbon isotope discrimination (Δ) can lead to errors in the estimate of gi. Potential effects of heterogeneity in stomatal aperture on carbon isotope discrimination may be particularly important and may lead to a dependence of gi upon CO2 assimilation rate. It is shown that for any concurrent measurement of A and Δ, the estimate of Cc is an overestimate of the correct photosynthetic capacity-weighted value, but this error is probably less than 1.0 Pa.  相似文献   

12.
The temperature dependence of C3 photosynthesis is known to vary with growth environment and with species. In an attempt to quantify this variability, a commonly used biochemically based photosynthesis model was parameterized from 19 gas exchange studies on tree and crop species. The parameter values obtained described the shape and amplitude of the temperature responses of the maximum rate of Rubisco activity (Vcmax) and the potential rate of electron transport (Jmax). Original data sets were used for this review, as it is shown that derived values of Vcmax and its temperature response depend strongly on assumptions made in derivation. Values of Jmax and Vcmax at 25 °C varied considerably among species but were strongly correlated, with an average Jmax : Vcmax ratio of 1·67. Two species grown in cold climates, however, had lower ratios. In all studies, the Jmax : Vcmax ratio declined strongly with measurement temperature. The relative temperature responses of Jmax and Vcmax were relatively constant among tree species. Activation energies averaged 50 kJ mol?1 for Jmax and 65 kJ mol?1 for Vcmax, and for most species temperature optima averaged 33 °C for Jmax and 40 °C for Vcmax. However, the cold climate tree species had low temperature optima for both Jmax(19 °C) and Vcmax (29 °C), suggesting acclimation of both processes to growth temperature. Crop species had somewhat different temperature responses, with higher activation energies for both Jmax and Vcmax, implying narrower peaks in the temperature response for these species. The results thus suggest that both growth environment and plant type can influence the photosynthetic response to temperature. Based on these results, several suggestions are made to improve modelling of temperature responses.  相似文献   

13.
Zeng W  Jiang Y L  Li F  Zhou G S 《农业工程》2008,28(6):2504-2510
The effect of drought on plant photosynthetic parameters has not been quantitatively described in the models of plant photosynthetic mechanism, so the seedlings of Quercus mongolica from Northeast China were used to study the responses of the photosynthetic parameters to soil water stresses. The results showed that the relationship between the maximum net leaf photosynthetic rate (Pmax) of Quercus mongolica and soil moisture could be expressed as a quadratic curve (P < 0.01), and Pmax reached the maximum when soil volume moisture was close to 35.45% of the field water holding capacity. The maximum rate of carboxylation (Vcmax), the maximum potential rate of electron transport (Jmax) and triose phosphate utilization (TPU) rate of Quercus mongolica also had quadratic relationships with soil water content (P < 0.01). Namely, Vcmax, Jmax and TPU had similar response curves to soil water, but had different optimal soil water contents. Based on the temperature and responses of plant photosynthetic parameters to water, this function provides researchers with the parameters and methodology for understanding and simulating the responses of plant photosynthetic parameters to drought stress.  相似文献   

14.
Chen CP  Zhu XG  Long SP 《Plant physiology》2008,148(2):1139-1147
Application of the widely used Farquhar model of photosynthesis in interpretation of gas exchange data assumes that photosynthetic properties are homogeneous throughout the leaf. Previous studies showed that heterogeneity in stomatal conductance (gs) across a leaf could affect the shape of the measured leaf photosynthetic CO2 uptake rate (A) versus intercellular CO2 concentration (Ci) response curve and, in turn, estimation of the critical biochemical parameters of this model. These are the maximum rates of carboxylation (Vc,max), whole-chain electron transport (Jmax), and triose-P utilization (VTPU). The effects of spatial variation in Vc,max, Jmax, and VTPU on estimation of leaf averages of these parameters from A-Ci curves measured on a whole leaf have not been investigated. A mathematical model incorporating defined degrees of spatial variability in Vc,max and Jmax was constructed. One hundred and ten theoretical leaves were simulated, each with the same average Vc,max and Jmax, but different coefficients of variation of the mean (CVVJ) and varying correlation between Vc,max and Jmax (Ω). Additionally, the interaction of variation in Vc,max and Jmax with heterogeneity in VTPU, gs, and light gradients within the leaf was also investigated. Transition from Vc,max- to Jmax-limited photosynthesis in the A-Ci curve was smooth in the most heterogeneous leaves, in contrast to a distinct inflection in the absence of heterogeneity. Spatial variability had little effect on the accuracy of estimation of Vc,max and Jmax from A-Ci curves when the two varied in concert (Ω = 1.0), but resulted in underestimation of both parameters when they varied independently (up to 12.5% in Vc,max and 17.7% in Jmax at CVVJ = 50%; Ω = 0.3). Heterogeneity in VTPU also significantly affected parameter estimates, but effects of heterogeneity in gs or light gradients were comparatively small. If Vc,max and Jmax derived from such heterogeneous leaves are used in models to project leaf photosynthesis, actual A is overestimated by up to 12% at the transition between Vc,max- and Jmax-limited photosynthesis. This could have implications for both crop production and Earth system models, including projections of the effects of atmospheric change.  相似文献   

15.
The aims of this paper was to modify the photosynthesis model of Farquhar, von Caemmerer and Berry (FvCB) to be able to predict light dependency of the carboxylation capacity (Vc) and to improve the prediction of temperature dependency of the maximum carboxylation capacity (Vcmax) and the maximum electron transport rate (Jmax). The FvCB model was modified by adding a sub-model for Ribulose-1,5-bisphosphate carboxylase (Rubisco) activation and validating the parameters for temperature dependency of Vcmax and Jmax. Values of parameters for temperature dependency of Vcmax and Jmax were validated and adjusted based on data of the photosynthesis response to temperature. Parameter estimation was based on measurements under a wide range of environmental conditions, providing parameters with broad validity. The simultaneous estimation method and the nonlinear mixed effects model were applied to ensure the accuracy of the parameter estimation. The FvCB parameters, Vcmax, Jmax, α (the efficiency of light energy conversion), θ (the curvature of light response of electron transport), and Rd (the non-photorespiratory CO2 release) were estimated and validated on a dataset from two other years. Observations and predictions matched well (R2 = 0.94). We conclude that incorporating a sub-model of Rubisco activation improved the FvCB model through predicting light dependency of carboxylation rate; and that estimating Vcmax, Jmax, α, θ, and Rd requires data sets of both CO2 and light response curves.  相似文献   

16.
In this study, we have examined several physiological, biochemical and morphological features of Buddleja davidii plants growing at 1300 m above sea level (a.s.l.) and 3400 m a.s.l., respectively, to identify coordinated changes in leaf properties in response to reduced CO2 partial pressure (Pa). Our results confirmed previous findings that foliar δ13C, photosynthetic capacity and foliar N concentration on a leaf area basis increased, whereas stomatal conductance (gs) decreased with elevation. The net CO2 assimilation rate (Amax), maximum rate of electron transport (Jmax) and respiration increased significantly with elevation, although no differences were found in carboxylation efficiency of Rubisco (Vcmax). Consequently, also the Jmax to Vcmax ratio was significantly increased by elevation, indicating that the functional balance between Ribulose‐1,5‐biphosphate (RuBP) consumption and RuBP regeneration changes as elevation increases. Our results also indicated a homeostatic response of CO2 transfer conductance inside the leaf (mesophyll conductance, gm) to increasing elevation. In fact, with elevation, gm also increased compensating for the strong decrease in gs and, thus, in the Pi (intercellular partial pressure of CO2) to Pa ratio, leading to similar chloroplast partial pressure of CO2 (Pc) to Pa ratio at different elevations. Because there were no differences in Vcmax, also A measured at similar PPFD and leaf temperature did not differ statistically with elevation. As a consequence, a clear relationship was found between A and gm, and between A and the sum of gs and gm. These data suggest that the higher dry mass δ13C of leaves at the higher elevation, indicative of lower long‐term Pc/Pa ratio, cannot be attributed to changes either in diffusional resistances or in carboxylation efficiency. We speculate that because temperature significantly decreases as the elevation increases, it dramatically affects CO2 diffusion and hence Pc/Pa and, consequently, is the primary factor influencing 13C discrimination at high elevation.  相似文献   

17.
Shoots of the tropical latex-producing tree Hevea brasiliensis (rubber tree) grow according to a periodic pattern, producing four to five whorls of leaves per year. All leaves in the same whorl were considered to be in the same leaf-age class, in order to assess the evolution of photosynthesis with leaf age in three clones of rubber trees, in a plantation in eastern Thailand. Light-saturated CO2 assimilation rate (A max) decreased more with leaf age than did photosynthetic capacity (maximal rate of carboxylation, V cmax , and maximum rate of electron transport, J max), which was estimated by fitting a biochemical photosynthesis model to the CO2-response curves. Nitrogen-use efficiency (A max/Na, Na is nitrogen content per leaf area) decreased also with leaf age, whereas J max and V cmax did not correlate with N a. Although measurements were performed during the rainy season, the leaf gas exchange parameter that showed the best correlation with A max was stomatal conductance (g s). An asymptotic function was fitted to the A max-g s relationship, with R 2 = 0.85. A max, V cmax, J max and g s varied more among different whorls in the same clone than among different clones in the same whorl. We concluded that leaf whorl was an appropriate parameter to characterize leaves for the purpose of modelling canopy photosynthesis in field-grown rubber trees, and that stomatal conductance was the most important variable explaining changes in A max with leaf age in rubber trees.  相似文献   

18.
Leaf age-dependent changes in structure, nitrogen content, internal mesophyll diffusion conductance (gm), the capacity for photosynthetic electron transport (Jmax) and the maximum carboxylase activity of Rubisco (Vcmax) were investigated in mature non-senescent leaves of Laurus nobilis L., Olea europea L. and Quercus ilex L. to test the hypothesis that the relative significance of biochemical and diffusion limitations of photosynthesis changes with leaf age. The leaf life-span was up to 3 years in L. nobilis and O. europea and 6 years in Q. ilex. Increases in leaf age resulted in enhanced leaf dry mass per unit area (MA), larger leaf dry to fresh mass ratio, and lower nitrogen contents per dry mass (NM) in all species, and lower nitrogen contents per area (NA) in L. nobilis and Q. ilex. Older leaves had lower gm, Jmax and Vcmax. Due to the age-dependent increase in MA, mass-based gm, Jmax and Vcmax declined more strongly (7- to 10-fold) with age than area-based (5- to 7-fold) characteristics. Diffusion conductance was positively associated with foliage photosynthetic potentials. However, this correlation was curvilinear, leading to lower ratio of chloroplastic to internal CO2 concentration (Cc/Ci) and larger drawdown of CO2 from leaf internal air space to chloroplasts (ΔC) in older leaves with lower gm. Overall the age-dependent decreases in photosynthetic potentials were associated with decreases in NM and in the fraction of N in photosynthetic proteins, whereas decreases in gm were associated with increases in MA and the fraction of cell walls. These age-dependent modifications altered the functional scaling of foliage photosynthetic potentials with MA, NM, and NA. The species primarily differed in the rate of age-dependent modifications in foliage structural and functional characteristics, but also in the degree of age-dependent changes in various variables. Stomatal openness was weakly associated with leaf age, but due to species differences in stomatal openness, the distribution of total diffusion limitation between stomata and mesophyll varied among species. These data collectively demonstrate that in Mediterranean evergreens, structural limitations of photosynthesis strongly interact with biochemical limitations. Age-dependent changes in gm and photosynthetic capacities do not occur in a co-ordinated manner in these species such that mesophyll diffusion constraints curb photosynthesis more in older than in younger leaves.  相似文献   

19.
The effects of long‐term (4 year) CO2 enrichment (70 Pa versus 35 Pa) and nitrogen nutrition (8 mm versus 1 mm NO3) on biomass accumulation and the development of photosynthetic capacity in leaves of cork oak (Quercus suber L., a Mediterranean evergreen tree) were studied. The evolution of photosynthetic parameters with leaf development was estimated by fitting the biochemical model of Farquhar et al. (Planta 149, 78–90, 1980) with modifications by Sharkey (Botanical Review 78, 71–75, 1985) to ACi response curves. CO2 enrichment had a small reduction effect on the development of the maximum CO2 fixation capacity by Rubisco (VCmax), and no effect over maximum electron transport capacity (Jmax), day‐time respiration (Rd) and Triose‐P utilization (TPU). However, there was a statistically significant effect of N fertilization and the interaction CO2 × N over the evolution of VCmax, Jmax and TPU. Relative stomatal limitation (estimated from ACi curves) was higher (+20%) for plants grown under ambient CO2 than for plants grown under elevated CO2. There was a significant effect of CO2 and N fertilization over total biomass accumulation as well as leaf area. Plants grown at elevated CO2 had 27% more biomass than plants grown at ambient CO2 when given high N. However, for plants grown under low N there was no significant effect of CO2 enrichment on biomass accumulation. Plants grown under low N also had significantly higher root : shoot ratios whereas there were no differences between CO2 treatments. The larger biomass accumulation of Q. suber under elevated CO2 is attributable to a higher availability of CO2 coupled to a larger leaf area, with no significant decrease in photosynthetic capacity under CO2 enrichment and elevated N fertilization. For low N fertilization, the effects of CO2 enrichment over leaf area and biomass accumulation are lost, suggesting that in native ecosystems with low N availability, the effects of CO2 enrichment may be insignificant.  相似文献   

20.
Estimates of seasonal variation in photosynthetic capacity (Pc) are critical for modeling the time course of carbon fluxes. Given the time‐intensive nature of calculating Pc parameters via gas exchange, it is appealing to calculate parameter variation via changes in chlorophyll (Chl) and nitrogen (N) content by assuming that Pc scales with these variables. Although seasonal changes in Pc and the relationships between N and Pc have been evaluated in forest canopies, there is limited data on seasonal parameter values in crops, nor is it clear if seasonal changes in Pc can be estimated from leaf traits under the high N fertility of managed systems. We characterized the seasonal variability of the maximum rates of carboxylation (Vcmax) and electron transport (Jmax) under well‐fertilized conditions for maize (Zea mays L.) and sunflower (Helianthus annuus L.) and coupled these data with measurements of Chl, N, and leaf mass per unit area (LMA). The seasonal Chl–N relationship was significant in maize, but not in sunflower. Area‐based N–Vcmax relationships were not significant for either crop. Mass‐based N–Vcmax relationships were weak in sunflower, but highly significant in maize. Our results suggest that Pc can be seasonally adjusted in maize with reliable estimates of changes in LMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号