首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The reaction of uranyl acetate with (2,2′-(1E,1′E)-(2-benzyl-3-hydroxyquinoxaline-6,7-diyl)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene) diphenol) (H2L1) at room temperature in methanol and chloroform yields the UO2L1 complex. Crystals were grown through solvent diffusion of the ligand-metal complex in dimethyl formamide with diethyl ether to prepare: UO2L1 · DMF (1). Complexes with 2,2′-(1E,1′E)-(2-benzyl-3-hydroxyquinoxaline-6,7-diyl)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)dibenzene-1,4-diol (H2L2) and 2,2′-(1E,1′E)-(2-hydroxy-3-isopropylquinoxaline-6,7-diyl)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)diphenol (H2L3) were also prepared, and crystals of the uranyl complexes (UO2L2 · DMF (2) and (3)) grown from DMF/ether. A fourth complex UO2L4 · H2O (4) was prepared through layering a solution of the tetra-tert-butyl substituted 2-quinoxalinol salen ligand H2L4 in acetone with an aqueous solution containing uranyl acetate. The complexes exhibit a symmetric core featuring a slightly distorted bicapped pentagonal geometry around the uranium center with two oxo-groups and two imine groups from the ligand chelating the ligand and the fifth site in the coordination plane of the ligand occupied by a solvent molecule. These compounds have been characterized using solution (NMR and UV-Vis) and solid-state (IR, X-ray crystallography) techniques. Complexes of H2L4 with early transition metals; Mn2+, Co2+, Ni2+, and Cu2+ are also prepared and characterized for comparison of solution and spectroscopic characteristics.  相似文献   

2.
Six copper(I) complexes {[Cu2(L1)(PPh3)2I2] · 2CH2Cl2}n (1), {[Cu2(L2)(PPh3)2]BF4}n (2), [Cu2(L3)(PPh3)4I2] · 2CH2Cl2 (3), [Cu2(L4)(PPh3)4I2] (4), [Cu2(L5)(PPh3)2I2] (5) and [Cu2(L6)(PPh3)2I2] (6) have been prepared by reactions of bis(schiff base) ligands: pyridine-4-carbaldehyde azine (L1), 1,2-bis(4′-pyridylmethyleneamino)ethane (L2), pyridine-3-carbaldehyde azine (L3), 1,2-bis(3′-pyridylmethyleneamino)ethane (L4), pyridine-2-carbaldehyde azine (L5), 1,2-bis(2′-pyridylmethyleneamino)ethane (L6) with PPh3 and copper(I) salt, respectively. Ligand L1 or L2 links (PPh3)2Cu2(μ-I)2 units to form an infinite coordination polymer chain. Ligand 3 or 4 acts as a monodentate ligand to coordinate two copper(I) atoms yielding a dimer. Ligand 5 or 6 chelates two copper(I) atoms using pyridyl nitrogen and imine nitrogen to form a dimer. Complexes 1-4 exhibit photoluminescence in the solid state at room temperature. The emission has been attributed to be intraligand π-π* transition mixed with MLCT characters.  相似文献   

3.
Palladium [PdCl2(L)] complexes with N-alkylpyridylpyrazole derived ligands [2-(5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L1), 2-(1-ethyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L2), 2-(1-octyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L3), and 2-(3-pyridin-2-yl-5-trifluoromethyl-pyrazol-1-yl)ethanol (L4) were synthesised. The crystal and molecular structures of [PdCl2(L)] (L = L2, L3, L4) were resolved by X-ray diffraction, and consist of monomeric cis-[PdCl2(L)] molecules. The palladium centre has a typical square-planar geometry, with a slight tetrahedral distortion. The tetra-coordinate metal atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine ligands in cis disposition. Reaction of L (L2, L4) with [Pd(CH3CN)4](BF4)2, in the ratio 1M:2L, gave complexes [Pd(L)]2(BF4)2. Treatment of [PdCl2(L)] (L = L2, L4) with NaBF4 and pyridine (py) and treatment of the same complexes with AgBF4 and triphenylphosphine (PPh3) yielded [Pd(L)(py)2](BF4)2 and [Pd(L)(PPh3)2](BF4)2 complexes, respectively. Finally, reaction of [PdCl2(L4)] with 1 equiv of AgBF4 yields [PdCl(L4)](BF4).  相似文献   

4.
Synthesis and single crystal X-ray structures of H2L1 and VO(L1)(HL) [H2L1 = N,N-bis(2-hydroxy-3,5-ditertiarybutyl)-N′,N′-dimethylethylendiamine) or simply aminebis(phenol) and H2L = salicylic acid) are reported here. The complex [VO(L1)(HL)] is in distorted octahedral geometry under O4N2 donor environment where the basal core is defined by O(1), O(3), O(2) and N(5) atoms and two axial coordinates are occupied by O(4), an alkoxo-group and N(1), an imino-nitrogen atom. The electron spray mass spectrometric study on [VO(L1)(HL)] in MeCN clearly points out the existence of single species in solution. Again, the 51V NMR of the bulk polycrystalline sample reveals that the complex [VO(L1)(HL)] mainly exists in three out of four possible isomers. The formation of [VO(L1)(HL)] from both [VO(L1)(OMe)] and [VO(L1)(OEt)] was followed kinetically by reacting with salicylic acid in MeCN. The presence of isosbestic point indicates a clean conversion of the reactants to product.  相似文献   

5.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

6.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RNHC(S)NHP(S)(OiPr)2 [R = pyridin-2-yl (HLa), pyridin-3-yl (HLb), 6-amino-pyridin-2-yl (HLc)] with Cu(PPh3)3I in aqueous EtOH/CH2Cl2 leads to mononuclear [Cu(PPh3)2La,b-S,S′] (1, 2) and [Cu(PPh3)Lc-S,S′] (3) complexes. Using copper(I) iodide instead of Cu(PPh3)3I, polynuclear complexes [Cun(L-S,S′)n] (4-6) were obtained. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy, ES-MS and elemental analyses. The crystal structures of Cu(PPh3)2Lb (2) and Cu(PPh3)Lc (3) were determined by single-crystal X-ray diffraction.  相似文献   

7.
The new ligand N,N-(2-methyl-2-(2-pyridyl)propan-1,3-diyl)bis(tetramethylguanidine) (L) and its four-coordinate, distorted square-planar copper(II) complex [CuLCl2] (1) were synthesized and structurally characterized. Similarly, bis(μ-OH)dicopper(II,II) complex [Cu2L2(OH)2](OTf)2 (2) was synthesized and structurally characterized. The pyridyl group in L does not coordinate in either 1 or 2. New examples of μ-η2:η2-disulfido dicopper(II,II) complexes were synthesized by treating a copper(I) complex of either L or L′ [L′ = 2′,2′-(propane-1,3-diyl)bis(1,1,3,3-tetramethylguanidine)] with elemental sulfur. [Cu2L2(S2)](PF6)2 (3) and [Cu2(S2)](PF6)2 (4) were both structurally characterized, and both structures have two copper(II) ions bridged by a disulfido ligand in a μ-η2:η2-manner. The ligands L and L′ coordinate in a bidentate fashion (like 1 and 2, the pyridyl ring does not coordinate in 3), and the geometry around the copper ions in 3 and 4 is distorted square planar. The metrical parameters of 3 and 4 were found to be similar to other μ-η2:η2-disulfido dicopper(II,II) complexes, and the Cu-S and Cu···Cu distances are among the shortest reported for this class of copper disulfide dimers.  相似文献   

8.
Reaction of [(p-cymene)RuCl2(PPh3)] (1) or [CpMCl2(PPh3)] (Cp = C5Me5) (3a: M = Rh; 4a: M = Ir) with 1-alkynes and PPh3 were carried out in the presence of KPF6, generating the corresponding alkenyl-phosphonio complexes, [(p-cymene)RuCl(PPh3){CHCR(PPh3)}](PF6) (2a: R = Ph; 2b: R = p-tolyl) or [CpMCl(PPh3){CHCPh(PPh3)}](PF6) (5: M = Rh; 6: M = Ir). Similar reactions of complexes [CpRhCl2(L1)] (3a: L1 = PPh3; 3c: L1 = P(OMe)3) with L2 (L2 = PPh3, PMePh2, P(OMe)3) gave [CpRhCl(L1)(L2)](PF6) (7bb: L1 = L2 = PMePh2; 7ca: L1 = P(OMe)3, L2 = PPh3; 7cc: L1 = L2 = P(OMe)3). Alkenyl-phosphonio complex 5 was treated with P(OMe)3 or 2,6-xylyl isocyanide, affording [CpRhCl(L){CHCPh(PPh3)}](PF6) (8a: L = P(OMe)3; 8b: L = 2,6-xylNC). X-ray structural analyses of 2a, 6 and 8a revealed that the phosphonium moiety bonded to the Cβ atom of the alkenyl group are E configuration.  相似文献   

9.
Thiocarbonate ruthenium complexes of the form CpRu(L)(L′)SCO2R (L = L′ = PPh3 (1), 1/2 dppe (2), L = PPh3, L′ = CO (3); R = Et (a), Bun (b), C6H5 (c), 4-C6H4NO2 (d)) have been synthesized by the reaction of the corresponding sulfhydryl complexes, CpRu(L)(L′)SH, with chloroformates, ROCOCl, at low temperature. The bis(triphenylphosphine) complexes 1 can be converted to 3 under CO atmosphere. The crystal structures of CpRu(PPh3)2SCO2Bun (1b), CpRu(dppe)SCO2Bun (2b), and CpRu(PPh3)(CO)SCO2Bun (3b) are reported.  相似文献   

10.
Four new mononuclear iron(III) complexes with the substituted-salicylaldimine ligands, [Fe(L1)(TCC)] (1), [Fe(L2)(TBC)] (2), [Fe(L3)(TBC)] (3) and [Fe(L4)(TCC)](CH3CN) (4) (HL1 = N′-(5-OH-salicylaldimine)-diethylenetriamine, HL2 = (N′-(5-Cl-salicylaldimine)-diethylenetriamine, HL3 N′-(5-Br-salicyl-aldimine)-dipropylenetriamine, HL4 = (N′-3,5-Br-salicylaldimine)-dipropylenetriamine, H2TCC = tetrachlorocatechol, and H2TBC = tetrabromocatechol), were prepared and characterized by XRD, EPR, and Mössbauer spectroscopy. The coordination sphere of the Fe(III) in complexes 1-4 is a distorted octahedral with N3O3 donors set which constructed by the Schiff-base ligands and the catecholate substrates of TBC or TCC. The in situ prepared Fe(III) complexes [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)(Cl2)], and [Fe(L4)Cl2] in absence of TBC or TCC show a high catecholase-like activity for the oxidation of 3,5-DTBC to the corresponding quinone 3,5-DTBQ.  相似文献   

11.
Different imine-type ligands, prepared by the condensation of anilines or of α-methylbenzylamine with 2-pyridinecarboxaldehyde (pyim1,2) or 2-quinolinecarboxaldehyde (quim1,2) were prepared. These species act as N,N′-bidentate, chelating ligands upon coordination to Cu(I): treatment of [Cu(PPh3)3Cl] with an equimolar amount of the ligands resulted in the displacement of two molecules of PPh3, giving rise to the formation of [Cu(pyim1,2)(PPh3)Cl] (1-2) and [Cu(quim1,2)(PPh3)Cl] (3-4), respectively. The copper derivatives 1-4 proved to be highly active catalysts in olefin cyclopropanation in the presence of ethyl diazoacetate, even using deactivated olefins (namely, 2-cyclohexen-1-one) as substrate. The X-ray structure of complex 2, [Cu(pyim2)(PPh3)Cl], is also reported.  相似文献   

12.
The rhodium(I) complexes TpmsRh(CO)2 (1) and TpmsRh(cod) (2) of the tripodal nitrogen ligand tris(pyrazolyl)methanesulfonate, Tpms=[(pz)3CSO3], catalyze the hydroformylation of 1-hexene. Addition of phosphine has a negative effect on the activity. The hydroformylation activity reaches a maximum at about 60 °C. At temperatures above 80 °C hydrogenation becomes an important secondary reaction. When the catalysis is performed at 60 °C in acetone with 1 or 2 as catalyst precursor all of the rhodium is recovered in the form of the rhodium(III) bis(acyl) complex TpmsRh(CO)(COC6H13)2 (9). A similar behaviour is observed with rhodium(I) complexes bearing the tripodal oxygen ligand LOMe=[(cyclopentadienyl)tris(dimethylphosphito-P) cobalt O,O,O″]. In this case all of the rhodium is transformed into LOMeRh(CO)(COC6H13)2 (10). These hitherto unknown bis(acyl) rhodium(III) complexes show the same catalytic activity as the rhodium(I) starting compounds.  相似文献   

13.
Three new Cu(II) complexes of formula [Cu(L1)(pyz)(CH3OH)]ClO4 (1), [Cu(L1)(4,4′-bpy)(ClO4)]·0.5H2O (2) and [{Cu(L2)(ClO4)}2(μ-4,4′-bpy)] (3) have been synthesised by using pyrazine (pyz) and 4,4′-bipyridine (4,4′-bpy) and tridentate O,N,O-donor hydrazone ligands, L1H and L2H, obtained by the condensation of 1,1,1-trifluoro-2,4-pentanedione with salicyloylhydrazide and benzhydrazide, respectively. The ligands and their complexes have been characterized by elemental analyses, FT-IR, and UV-Vis spectroscopies. Single crystal X-ray structure analysis evidences the metal ion in a slightly deformed square pyramidal geometry in all the complexes. However complexes 1 and 2 are mononuclear with pyz and 4,4′-bpy, respectively, showing an unusual monodentate behavior, while complex 3 is dinuclear with 4,4′-bpy adopting the typical bridging coordination mode. Self assembly of the complex units by hydrogen bonding interactions produces one-dimensional arrangement in each crystal packing. The magnetic characterization of complex 3 indicates a weak antiferromagnetic exchange interaction between the Cu(II) ions (J = −0.96 cm−1) mediated through the long 4,4′-bpy bridge. Electrochemical behavior of the complexes is also discussed.  相似文献   

14.
Reactions of 2-(arylazo)pyridine (La-c) with [IrCl3(PPh3)2] in two different solvents, viz. ethanol and toluene are reported. In refluxing toluene two new isomeric (mer and fac geometries) iridium complexes, having molecular formula [IrCl3(PPh3)(L)] (1 and 2) have been isolated. The reaction in refluxing ethanol yielded two new hydrido complexes of molecular formula [IrHCl2(PPh3)(L)] (3) and [IrHCl(PPh3)2(L)]Cl (4) along with the compound 2. All the complexes have been thoroughly characterized by NMR, UV-Vis spectroscopy, cyclic voltammetry and X-ray crystallographic analysis. The 1H NMR spectra of the hydrido complexes 3 and 4 showed a doublet and a triplet signals at δ −20.43 and −14.82 respectively due to coupling with magnetically equivalent phosphorous nuclei. Strong trans influence of the π-acceptor ligands guided the X-ray structural parameters; bonds trans to the these ligands are unusually long. Similar elongation effect was also noted for the bonds trans to the coordinated hydrido ligand. UV-Vis-NIR spectrum consisted of multiple transitions in the UV and visible regions. Cyclic voltammetry of each of these complexes has exhibited a reductive response between −0.25 and −0.55 V, which has been assigned to azo-ligand reduction. The compound 3, however, showed a quasireversible oxidative wave near 1.45 V, due to IrIII/IrIV couple.  相似文献   

15.
Treatment of the six-coordinate trimethylstannyl complex, Os(SnMe3)(κ2-S2CNMe2)(CO)(PPh3)2 (1) with SnMe2Cl2 produces Os(SnMe2Cl)(κ2-S2CNMe2)(CO)(PPh3)2 (2), which in turn reacts readily with hydroxide ion to give, Os(SnMe2OH)(κ2-S2CNMe2)(CO)(PPh3)2 (3). The osmastannol complex 3 undergoes a reaction with 2 equivalents of tBuLi, in which one of the phenyl rings of a triphenylphosphine ligand is “ortho-stannylated”, without cleavage of the Os-Sn bond, to give the cyclic complex, Os(κ2(Sn,P)-SnMe2C6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (4). This novel cyclic complex is selectively functionalised at the tin atom by reaction with SnMe2Cl2 which exchanges one methyl group for chloride giving the diastereomeric mixture, Os(κ2(Sn,P)-SnMeClC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (5a/5b). Crystal structure determination reveals that both diastereomers occur in the unit cell. The mixture, 5a/5b, undergoes reaction with hydroxide ion to give the diastereomeric osmastannol complexes, Os(κ2(Sn,P)-SnMeOHC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (6a/6b) and with sodium borohydride to give the corresponding tin-hydride mixture, Os(κ2(Sn,P)-SnMeHC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (7a/7b). Crystal structure determinations for 2, 4, and 5a/5b have been obtained.  相似文献   

16.
New neutral Pd(II) and Pt(II) complexes of the type [M(L)(PPh3)] (MPd or Pt) were prepared in crystalline form in high-yield synthesis with the S-benzyldithiocarbazates and S-4-nitrobenzyldithiocarbazates derivatives from 2-hydroxyacetophenone, H2L1a and H2L1b, and benzoylacetone, H2L2a and H2L2b. The new complexes [Pt(L1a)(PPh3)] (1), [Pd(L1a)(PPh3)] (2), [Pt(L1b)(PPh3)] (3), [Pd(L1b)(PPh3)] (4), [Pt(L2a)(PPh3)] (5), [Pd(L2a)(PPh3)] (6), [Pt(L2b)(PPh3)] (7) and [Pd(L2b)(PPh3)] (8) were characterized on the basis of elemental analysis, conductivity measurements, UV-visible, IR, electrospray ionization mass spectrometry (ESI-MS), NMR (1H and 31P) and by X-ray diffraction studies. The studies showed that differently from what was observed for the H2L1a and H2L1b ligands, H2L2a and H2L2b assume cyclic forms as 5-hydroxypyrazolinic. Upon coordination, H2L2a and H2L2b suffer ring-opening reaction, coordinating in the same manner as H2L1a and H2L1b, deprotonated and in O,N,S-tridentate mode to the (MPPh3)2+ moiety. All complexes show a quite similar planar fourfold environment around the M(II) center. Furthermore, these complexes exhibited biological activity on extra and intracellular forms of Trypanosoma cruzi in a time- and concentration-dependent manner with IC50 values ranging from 7.8 to 18.7 μM, while the ligand H2L2a presented a trypanocidal activity on trypomastigote form better than the standard drug benznidazole.  相似文献   

17.
The organometallic tin(IV) complexes [SnPh2(SRF)2] SRF = SC6F4-4-H (1), SC6F5 (2), were synthesized and their reactivity with [MCl2(PPh3)2] M = Ni, Pd and Pt explored. Thus, transmetallation products were obtained affording polymeric [Ni(SRF)(μ-SRF)]n, monomeric cis-[Pt(PPh3)2(SC6F4-4-H)2] (3) and cis-[Pt(PPh3)2(SC6F5)2] (4) and dimeric species [Pd(PPh3)(SC6F4-4-H)(μ-SC6F4-4-H)]2 (5) and [Pd(PPh3)(SC6F5)(μ-SC6F5)]2 (6) for Ni, Pt and Pd, respectively. The crystal structures of complexes 1, 2, 3, 4 and 6 were determined.  相似文献   

18.
The interaction of an excess of the title ligands L with the cis-Pt(phos)2 moieties gives compounds a-bcis-[Pt(L-O)2(phos)2] (a, phos = P(Ph)3; b, phos = 1/2 dppe), in which O- is preferred to S-coordination. Such preference is confirmed by the fact that the same products are obtained by reaction of excess of L with the previously reported a-d complexes [Pt(L-O,S)(phos)2]+, (c, phos = PPh3, d, phos = 1/2 dppe), for which chelate ring opening occurs with rupture of Pt-S rather than Pt-O bonds. Compound a can be obtained also by oxidative addition of HL to [Pt(PPh3)3]. The Pt-O bonds in compounds a-d are stable towards substitution by Me2SO, pyridine and tetramethylthiourea. Substitution of L’s occurs with N,N′-diethyldithiocarbamate, which forms a very stable chelate with Pt(II). Thiourea and N,N′-dimethylthiourea also react, because they give rise to cyclometallated products [Pt(phos)2(NRC(S)NHR)]+ (R = H, CH3), with one ionised thioamido group, as revealed by an X-ray investigation of [Pt(PPh3)2(NHC(S)NH2)]+. The preference of O versus S coordination, as well as the stability of the Pt-O bonds, are discussed in terms of antisymbiosis.  相似文献   

19.
The crystalline compounds [LnCl2(L)(thf)2] [Ln = Ce (1), Tb (2), Yb (3)], [NdI2(L)(thf)2] (4), [LnCl(L′)2] [Ln = Tb (5), Yb (6) (a known compound)] and [YbCl(L′′)(μ-Cl)2Li(OEt2)2] (7) have been prepared [L = {N(C6H3Pri2-2,6)C(H)}2CPh, L′ = {N(SiMe3)C(Ph)}2CH, L′′ = {N(SiMe3)C(C6H4Ph-4)}2CH]. The X-ray molecular structures of 2-7 have been established; in each, the monoanionic ligand L, L′ or L′′ is N,N′-chelating and essentially π-delocalised. Each of 1-7 was prepared from the appropriate LnCl3, or for 4 [NdI3(thf)2], and an equivalent portion of the appropriate alkali metal [Li for 7, Na for 2, 3 and 5, or K for 1, 4 and 6] β-diiminate in thf; the isolation of exclusively 5 and 6 (rather than the L′ analogues of 2 or 3) is noteworthy, as is the structure of 7 which has no precedent in Group 3 or 4f metal β-diiminato chemistry.  相似文献   

20.
Treatment of ‘RuCl3 · 3H2O’ with Ph2AsCH2AsPh2 (dpam) in hot EtOH gives either trans-[RuCl2(dpam-As,As′)(dpam-As)2] (1), or cis-[RuCl2(dpam-As,As′)2] (2), depending on the mole ratio. On exposure to light, solutions of 2 isomerise to trans-[RuCl2(dpam-As,As′)2] (3). Treatment of [RuCl2(PPh3)3] with two equivalents of dpam in CH2Cl2 gave a mixture of two products, from which trans-[RuCl2(PPh3) (dpam-As,As′)(dpam-As)] (4) was isolated by recrystallisation. The crystal structures of 1-4 are reported. Complexes 1-3 in CH2Cl2 undergo electrochemical oxidation to Ru(III), and the Ru(III) form of 2 undergoes isomerisation on the voltammetric timescale to the Ru(III) form of 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号