首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The absolute and relative breadths of the mandibular ramus (MRB) display substantial variation in modern humans, and are of analytical value in paleoanthropology. According to Enlow et al. ([1969] Am. J. Orthod. 56:6-23), the ramus is the growth counterpart of the middle cranial fossa (MCF) and the pharynx. Such counterpart principles state that variation in ramus breadth is a frequent function of the horizontal alignment of the MCF, and both structures tend to covary within and between populations. These authors also suggested that lateral parts of the basicranium have a particular importance in the positioning of facial components. In the present study, this hypothesis is tested, and relationships between midline and lateral basicranial elements and ramus breadth variation are explored. Two-dimensional landmarks taken from lateral radiographs of adult crania representative of three modern human populations (Europeans, West Africans, and Japanese) were analyzed by geometric morphometry. Our results are consistent with previous counterpart analyses. Furthermore, our findings highlight the significance of the orientation of the petrous temporal to modern human mandibular ramus variation. Variation in the orientation of the petrosal bone appears to alter the spatial position of the mandible and influences MRB. Developmental integration of a petroso-mandibular unit may have important paleoanthropological implications.  相似文献   

2.
Mosaic evolution describes different rates of evolutionary change in different body units. Morphologically these units are described by more relationships within a unit than between different units which relates mosaic evolution with morphological integration and modularity. Recent evidence suggests mosaic evolution at the human basicranium due to different evolutionary rates of midline and lateral cranial base morphology but this hypothesis has not yet been addressed explicitly. We this hypothesis and explore how mosaic evolution relates to modular development. Evolutionary data sets on midline (N = 186) and lateral (N = 86) basicranial morphology are compared with 3D data on pre- and postnatal basicranial ontogeny (N = 71). Our results support the hypothesis of mosaic evolution and suggest a modular nature of basicranial development. Different embryological basicranial units likely became differently modified during evolution, with relatively stable midline elements and more variable lateral elements. In addition, developmental data suggests that modularity patterns change throughout ontogeny. During prenatal ontogeny lateral basicranial elements (greater sphenoid wings and petrosal pyramids) change together compared with the midline base. Close to birth the greater sphenoid wings keep a spatially stable position, while the petrosal pyramids become dissociated and shifted posteriorly. After birth the greater sphenoid wings and petrosal pyramids change again jointly and with respect to midline cranial base elements. This sequential pattern of integration and modularization and re-integration describes human basicranial ontogeny in a way that is potentially important for the understanding of evolutionary change. Phylogenetic modifications of this pattern during morphogenesis, growth, and development may underlie the mosaic evolution of the hominin basicranium.  相似文献   

3.
This study tests the relative efficacy of human cranial modules, defined on the basis of developmental and functional criteria, for reconstructing neutral genetic population history. Specifically, two hypotheses were tested: 1) The "basicranial hypothesis" predicts that the endochondrally ossifying basicranium will be more reliable for reconstructing population history than intramembranously ossifying regions of the human cranium. This is based on the assumption that early ossification of the basicranium and its distinct functional constraints produce a cranial structure that is relatively immune to non-neutral evolutionary forces. 2) The "single function hypothesis" predicts that cranial regions associated with a single (sensory) function are less reliable indicators of neutral genetic history. Here the prediction is based on the logic that complex, multi-functional, integrated cranial regions are less likely toexhibit homoplasy and, therefore, provide a more accurate morphological proxy for genetic relationships. The congruence between craniometric affinity matrices and neutral genetic population matrices based on autosomal microsatellite and classical markers was assessed using a series of Mantel and Dow-Cheverud tests. The results did not support the predictions of the "basicranial hypothesis," as the endochondrally ossifying basicranium was not significantly more congruent with the genetic data than intramembraneously ossifying modules. Moreover, although the results provided some support for the "single function hypothesis," defining cranial modules on the basis of anatomical or functional complexity did not provide a consistent means of predicting their phylogenetic efficacy. These results have important implications for building an accurate inference model of cranial evolution in the human fossil record.  相似文献   

4.
This paper examines how various measures of basicranial length and cranial base angulation affect the relationship between basicranial flexion and relative brain size in anthropoids, including Homo sapiens. Most recent studies support the "spatial packing" hypothesis, that basicranial flexion in haplorhines maximizes braincase volume relative to basicranial length. However, a few studies find the basicranium is less flexed in H. sapiens than expected for other anthropoids, suggesting that other factors contribute to variation in hominin basicranial flexion. The measure of relative brain size used to test the spatial packing hypothesis, the Index of Relative Encephalization (IRE), is calculated with basicranial length (BL) in its denominator, so that shorter BL and larger brain size potentially inflate H. sapiens IREs. To investigate this problem, the lengths of midline cranial floor sections were scaled relative to the cube root of endocranial volume in 157 specimens from 18 anthropoid species. Results indicate that the posterior cranial base and planum sphenoideum are significantly shorter in H. sapiens than in other anthropoids, accounting for higher IREs. Including the cribriform plate in BL, advisable in studies using anthropoids, affects whether H. sapiens differs from other anthropoids for basicranial flexion vs. IRE. However, despite a shorter BL and elevated IRE, H. sapiens does not deviate significantly from the anthropoid relationship between basicranial flexion and relative brain size for two cranial base angles. Because different measures of cranial base angulation change how H. sapiens falls along the anthropoid regression line, it remains equivocal whether the basicranium is less flexed in H. sapiens than in other anthropoids when compared to relative brain size.  相似文献   

5.
Understanding variation in the basicranium is of central importance to paleoanthropology because of its fundamental structural role in skull development and evolution. Among primates, encephalisation is well known to be associated with flexion between midline basicranial elements, although it has been proposed that the size or shape of the face influences basicranial flexion. In particular, brain size and facial size are hypothesized to act as antagonists on basicranial flexion. One important and unresolved problem in hominin skull evolution is that large-brained Neanderthals and some Mid-Pleistocene humans have slightly less flexed basicrania than equally large-brained modern humans. To determine whether or not this is a consequence of differences in facial size, geometric morphometric methods were applied to a large comparative data set of non-human primates, hominin fossils, and humans (N = 142; 29 species). Multiple multivariate regression and thin plate spline analyses suggest that basicranial evolution is highly significantly influenced by both brain size and facial size. Increasing facial size rotates the basicranium away from the face and slightly increases the basicranial angle, whereas increasing brain size reduces the angles between the spheno-occipital clivus and the presphenoid plane, as well as between the latter and the cribriform plate. These interactions can explain why Neanderthals and some Mid-Pleistocene humans have less flexed cranial bases than modern humans, despite their relatively similar brain sizes. We highlight that, in addition to brain size (the prime factor implicated in basicranial evolution in Homo), facial size is an important influence on basicranial morphology and orientation. To better address the multifactorial nature of basicranial flexion, future studies should focus on the underlying factors influencing facial size evolution in hominins.  相似文献   

6.
Pivotally positioned as the interface between the neurocranium and the face, the cranial base has long been recognized as a key area to our understanding of the origins of modern human skull form. Compared with other primates, modern humans have more coronally orientated petrous bones and a higher degree of basicranial flexion, resulting in a deeper and wider posterior cranial fossa. It has been argued that this derived condition results from a phylogenetic increase in the size of the brain and its subcomponents (infra- and supratentorial volumes) relative to corresponding lengths of the cranial base (posterior and anterior, respectively). The purpose of this study was to test such evolutionary hypotheses in a prenatal ontogenetic context. We measured the degree of basicranial flexion, petrous reorientation, base lengths, and endocranial volumes from high-resolution magnetic resonance images (hrMRI) of 46 human fetuses ranging from 10-29 weeks of gestation. Bivariate comparisons with age revealed a number of temporal trends during the period investigated, most notable of which were coronal rotation of the petrous bones and basicranial retroflexion (flattening). Importantly, the results reveal significant increases of relative endocranial sizes across the sample, and the hypotheses therefore predict correlated variations of cranial base flexion and petrous orientation in accordance with these increases. Statistical analyses did not yield results as predicted by the hypotheses. Thus, the propositions that base flexion and petrous reorientation are due to increases of relative endocranial sizes were not corroborated by the findings of this study, at least for the period investigated.  相似文献   

7.
Numerous hypotheses explaining interspecific differences in the degree of basicranial flexion have been presented. Several authors have argued that an increase in relative brain size results in a spatial packing problem that is resolved by flexing the basicranium. Others attribute differences in the degree of basicranial flexion to different postural behaviors, suggesting that more orthograde animals require a ventrally flexed pre-sella basicranium in order to maintain the eyes in a correct forward-facing orientation. Less specific claims are made for a relationship between the degree of basicranial flexion and facial orientation. In order to evaluate these hypotheses, the degree of basicranial flexion (cranial base angle), palate orientation, and orbital axis orientation were measured from lateral radiographs of 68 primate species and combined with linear and volumetric measures as well as data on the size of the neocortex and telencephalon. Bivariate correlation and partial correlation analyses at several taxonomic levels revealed that, within haplorhines, the cranial base angle decreases with increasing neurocranial volume relative to basicranial length and is positively correlated with angles of facial kyphosis and orbital axis orientation. Strepsirhines show no significant correlations between the cranial base angle and any of the variables examined. It is argued that prior orbital approximation in the ancestral haplorhine integrated the medial orbital walls and pre-sella basicranium into a single structural network such that changes in the orientation of one necessarily affect the other. Gould's (“Ontogeny and Phylogeny.” Cambridge: Belknap Press, 1977) hypothesis, that the highly flexed basicranium of Homo may be due to a combination of a large brain and a relatively short basicranium, is corroborated. © 1993 Wiley-Liss, Inc.  相似文献   

8.
A fundamental challenge of morphology is to identify the underlying evolutionary and developmental mechanisms leading to correlated phenotypic characters. Patterns and magnitudes of morphological integration and their association with environmental variables are essential for understanding the evolution of complex phenotypes, yet the nature of the relevant selective pressures remains poorly understood. In this study, the adaptive significance of morphological integration was evaluated through the association between feeding mechanics, ingestive behavior and craniofacial variation. Five capuchin species were examined, Cebus apella sensu stricto, Cebus libidinosus, Cebus nigritus, Cebus olivaceus and Cebus albifrons. Twenty three-dimensional landmarks were chosen to sample facial regions experiencing high strains during feeding, characteristics affecting muscular mechanical advantage and basicranial regions. Integration structure and magnitude between and within the oral and zygomatic subunits, between and within blocks maximizing modularity and within the face, the basicranium and the cranium were examined using partial-least squares, eigenvalue variance, integration indices compared inter-specifically at a common level of sampled population variance and cluster analyses. Results are consistent with previous findings reporting a relative constancy of facial and cranial correlation patterns across mammals, while covariance magnitudes vary. Results further suggest that food material properties structure integration among functionally-linked facial elements and possibly integration between the face and the basicranium. Hard-object-feeding capuchins, especially C.apella s.s., whose faces experience particularly high biomechanical loads are characterized by higher facial and cranial integration especially compared to C.albifrons, likely because morphotypes compromising feeding performance are selected against in species relying on obdurate fallback foods. This is the first study to report a link between food material properties and facial and cranial integration. Furthermore, results do not identify the consistent presence of cranial modules yielding support to suggestions that despite the distinct embryological imprints of its elements the cranium of placental mammals is not characterized by a modular architecture.  相似文献   

9.
The basicranium has been argued to contain a strong phylogenetic signal in previous analyses of primate cranial morphology. Therefore, further study of basicranial morphology may offer new insights into controversial phylogenetic relationships within primate groups. In this study, I apply 3‐D geometric morphometric techniques in a phylogenetic analysis of the African papionin basicranium. The effects of allometry strongly influence African papionin basicranial morphology and, unless these size effects are controlled or eliminated, phylogenetic analyses suggest traditional phylogenetic groupings of small taxa (mangabeys) and large taxa (geladas, mandrills, drills, and baboons). When the effects of allometry are eliminated by excluding size‐correlated principal components (PCs) or by regression analysis with retention of residuals, phylogenetic analyses of African papionin basicranial morphology are incongruent with recent molecular and morphological studies. By contrast, a cladistic analysis of basicranial characters using the narrow allometric coding method suggests the same phylogenetic relationships as recent molecular and morphological studies. These results suggest that important phylogenetic information is contained within the size‐correlated data, and this information is being discarded during the attempt to eliminate the effects of body size. Future 3‐D morphometric studies of phylogeny should focus on the development of new methodologies to adjust for allometric effects, as current techniques appear to be ill‐equipped to deal with the case of a size‐disparate, lower‐level taxonomic group. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Different factors and processes that produce phenotypic variation at the individual, population, or interspecific level can influence or alter the covariance structure among morphological traits. Therefore, studies of the patterns of integration and modularity at multiple levels—static, ontogenetic, and evolutionary, can provide invaluable data on underlying factors and processes that structured morphological variation, directed, or constrained evolutionary changes. Our dataset, consisting of cranium shape data for 14 lizard species from the family Lacertidae, with substantial samples of hatchlings and adults along with their inferred evolutionary relationships, enabled us to assess modularity and morphological integration at all three levels. Five, not mutually exclusive modularity hypotheses of lizard cranium, were tested, and the effects of allometry on intensity and the pattern of integration and modularity were estimated. We used geometric morphometrics to extract symmetric and asymmetric, as well as allometric and nonallometric, components of shape variation. At the static level, firm confirmation of cranial modularity was found for hypotheses which separate anterior and posterior functional compartments of the skull. At the ontogenetic level, two alternative hypotheses (the “anteroposterior” and “neurodermatocranial” hypotheses) of ventral cranial modularity were confirmed. At the evolutionary level, the “neurodermatocranial” hypothesis was confirmed for the ventral cranium, which is in accordance with the pattern observed at the ontogenetic level. The observed pattern of static modularity could be driven by functional demands and can be regarded as adaptive. Ontogenetic modularity and evolutionary modularity show the same developmental origin, indicating conservatism of modularity patterns driven by developmental constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号