首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiol oxidation by diphenyl ditelluride is a favorable reaction and may be responsible for alteration in regulatory or signaling pathways. We have measured rate constants for reactions of diphenyl ditelluride with cysteine, dimercaptosuccinic acid, glutathione and dithiothreitol in phosphate buffer. The relative reactivities of the different thiols with diphenyl ditelluride were independent of the pKa of the thiol group, such that at pH 7.4, cysteine and dithiothreitol were the most reactive and low reactivity was observed with glutathione and dimercaptosuccinic acid. The reactivity of diphenyl ditelluride was not modified by change in pH. Rate of oxidation increased with increasing pH for all thiols except dimercaptosuccinic acid, where the rate of oxidation was faster at low pH. The lipid peroxidation product malonaldehyde (MDA) was measured in rat brain homogenate and phospholipids extract from egg yolk after incubation in phosphate buffer at various pHs ranging from 7.4 to 5.4. TBARS production increased when homogenates were incubated in the pH (5.4-6.8) medium both in the absence and presence of Fe(II). These data indicate that lipid peroxidation processes, mediated by iron, are enhanced with decreasing pH. The iron mobilization may come from reserves where it is weakly bound. Diphenyl ditelluride significantly protected TBARS production at all studied pH values in a concentration dependent manner in brain homogenate. This study provides in vitro evidence for acidosis induced oxidative stress and anti-oxidant action of diphenyl ditelluride.  相似文献   

2.
By mediating the Ca(2+) influx, Ca(2+) channels play a central role in neurotransmission. Chemical agents that potentially interfere with Ca(2+) homeostasis are potential toxic agents. In the present investigation, changes in Ca(2+) influx into synaptosomes by organic forms of selenium and tellurium were examined under nondepolarizing and depolarizing conditions induced by high KCl concentration (135 mM) or by 4-aminopyridine (4-AP). Under nondepolarizing conditions, ebselen (400 micro M) increased Ca(2+) influx; diphenyl ditelluride (40-400 micro M) decreased Ca(2+) in all concentrations tested; and diphenyl diselenide decreased Ca(2+) influx at 40 and 100 micro M, but had no effect at 400 micro M. In the presence of KCl as depolarizing agent, ebselen and diphenyl ditelluride decreased Ca(2+) influx in a linear fashion. In contrast, diphenyl diselenide did not modify Ca(2+) influx into isolated nerve terminals. In the presence of 4-AP (3 mM) as depolarizing agent, ebselen (400 micro M) caused a significant increase, whereas diphenyl diselenide and diphenyl ditelluride inhibited Ca(2+) influx into synaptosomes. The results can be explained by the fact that the mechanism through which 4-AP and high K(+) induced elevation of intracellular Ca(2+) is not exactly coincident. The mechanism by which diphenyl ditelluride and ebselen interact with Ca(2+) channel is unknown, but may be related to reactivity with critical sulfhydryl groups in the protein complex. The results of the present study indicate that the effects of organochalcogenides were rather complex depending on the condition and the depolarizing agent used.  相似文献   

3.
The aim of this paper was to investigate the mechanism(s) involved in the sodium oxalate pro-oxidative activity in vitro and the potential protection by diphenyl diselenide ((PhSe)(2)) and diphenyl ditelluride ((PhTe)(2)) using supernatants of homogenates from brain, liver and kidney. Oxalate causes a significant increase in the TBARS (thiobarbituric acid reactive species) production up to 4mmol/l and it had antioxidant activity from 8 to 16mmol/l in the brain and liver. Oxalate had no effect in kidney homogenates. The difference among tissues may be related to the formation of insoluble crystal of oxalate in kidney, but not in liver and brain homogenates. (PhSe)(2) and (PhTe)(2) reduced both basal and oxalate-induced TBARS in rat brain homogenates, whereas in liver homogenates they were antioxidant only on oxalate-induced TBARS production. (PhSe)(2) showed a modest effect on renal TBARS production, whereas (PhTe)(2) did not modulate TBARS in kidney preparations. Oxalate at 2mmol/l did not change deoxyribose degradation induced by Fe(2+) plus H(2)O(2), whereas at 20mmol/l it significantly prevents its degradation. Oxalate (up to 4mmol/l) did not alter iron (10micromol/l)-induced TBARS production in the brain preparations, whereas at 8mmol/l onwards it prevents iron effect. In liver preparations, oxalate amplifies iron pro-oxidant activity up to 4mmol/l, preventing iron-induced TBARS production at 16mmol/l onwards. These results support the antioxidant effect of organochalcogens against oxalate-induced TBARS production. In addition, our results suggest that oxalate pro- and antioxidant activity in vitro could be related to its interactions with iron ions.  相似文献   

4.
Influence of pH on the extent of lipid peroxidation and the anti-oxidant potential of an organoselenium compound is explored. Acidosis increased the rate of lipid peroxidation both in the absence and presence of Fe (II) in rat’s brain, kidney and liver homogenate and phospholipids extract from egg yolk. The organoselenium compound significantly protected lipids from peroxidation, both in the absence and presence of Fe (II). Changing the pH of the reaction medium did not alter the anti-oxidant activity of the tested compound. This study provides in vitro evidence for acidosis-induced oxidative stress in brain, kidney, liver homogenate and phospholipids extract and the anti-oxidant action of the tested organoselenium compound.  相似文献   

5.
In the present study, the inhibitory effect of diphenyl diselenide and diphenyl ditelluride after in vitro, acute (a single dose), or chronic exposure (14 doses) was examined in mice 24 hours after the last administration. In vitro, diphenyl diselenide, and diphenyl ditelluride inhibited delta-aminolevulinate dehydratase (delta-ALA-D) from brain, liver, and kidney with a similar potency (IC50 5-10 microM), and at 120 microM, they increased the rate of dithiothreitol (DTT) and reduced glutathione (GSH) oxidation. After a single dose (sc), diphenyl diselenide (1 mmol/kg) inhibited the liver (22%, p < 0.01) and brain (27%, p < 0.01) delta-ALA-D, but it did not inhibit the kidney enzyme. After a single dose (sc), diphenyl ditelluride (0.5 mmol/kg) inhibited liver (46%, p < 0.01), kidney (21%, p < 0.05), and brain (39%, p < 0.01) delta-ALA-D. Chronic exposure to diphenyl diselenide (0.125 and 0.250 mmol/kg) caused significant (p < 0.05) increase in liver and liver-to-body weight ratio and inhibited liver (40 and 60%, respectively) and brain (21 and 40%, respectively) delta-ALA-D. Kidney delta-ALA-D was not inhibited significantly after exposure to diphenyl diselenide. Total nonprotein - SH concentration was decreased only in liver of animals exposed for 14 days to selenide. Chronic exposure to diphenyl ditelluride (0.010 and 0.025 mmol/kg) caused significant (p < 0.05) inhibition of liver (28 and 42%, respectively) and brain (23 and 54%, respectively) delta-ALA-D. Kidney delta-ALA-D was not inhibited significantly by diphenyl ditelluride. Total nonprotein--SH concentration was decreased to a different extent after acute or chronic treatment with diphenyl ditelluride depending on analyzed tissue. Hemoglobin content was decreased significantly by 17 and 22% after chronic treatment with 0.125 and 0.25 mmol/kg diphenyl diselenide, respectively. Chronic exposure to 0.010 mmol/kg diphenyl ditelluride caused a reduction of 17% in hemoglobin content that tended to be significant (p < 0.10). These results suggest that delta-ALA-D inhibition after exposure to organochalcogens may perturb heme-dependent metabolic pathway and contribute to the toxicological properties of these compounds.  相似文献   

6.
This study was designed to determine the effect of diphenyl diselenide and ebselen, synthetic organoselenium compounds with antioxidant properties, in diabetic rats. Diabetes was induced by the administration of streptozotocin (STZ) (45mg/kg, intravenous). In experimental trials, diphenyl diselenide, but not ebselen, caused a significant reduction in blood glucose levels of STZ-treated rats. This effect of diphenyl diselenide was accompanied by a reduction in the levels of glycated proteins. Diphenyl diselenide ameliorate superoxide dismutase activity (liver and erythrocytes) and Vitamin C levels (liver, kidney and blood), which were decreased in STZ-treated rats. In normal rats, diphenyl diselenide caused per se an increase in hepatic, renal and blood GSH levels. Similarly, treatment with diphenyl diselenide restored hepatic and renal GSH levels in STZ-treated rats. TBARS and protein carbonyl levels were not modified by STZ and/or diphenyl diselenide and ebselen treatments. Our findings suggest that diphenyl diselenide can be considered an anti-diabetogenic agent by exhibiting anti-hyperglycemic and antioxidant properties.  相似文献   

7.
Aluminium salts do not themselves stimulate peroxidation of ox-brain phospholipid liposomes, but they greatly accelerate the peroxidation induced by iron(II) salts at acidic pH values. This effect of Al(III) is not seen at pH 7.4, perhaps because Al(III) salts form insoluble complexes at this pH in aqueous solution. Peroxidation of liposomes in the presence of Al(III) and Fe(II) salts is inhibited by the chelating agent desferrioxamine, and by EDTA and diethylenetriaminepentaacetic acid at concentrations greater than those of Fe(II) salt. Aluminium salts slightly stimulate the peroxidation of peroxide-depleted linolenic acid micelles, but they do not accelerate the peroxidation induced by addition of iron(II) salts to the micelles at acidic pH. Aluminium salts accelerate the peroxidation observed when human erythrocytes are treated with hydrogen peroxide at pH 7.4. Desferrioxamine decreases the peroxidation. We suggest that Al(III) ions produce an alteration in membrane structure that facilitates lipid peroxidation, and that the increased formation of fluorescent age pigments in the nervous system of patients exposed to toxic amounts of Al(III) may be related to this phenomenon. The ability of desferal to bind both iron (III) and aluminium(III) salts and to inhibit lipid peroxidation makes it an especially useful chelating agent in the treatment of 'aluminium overload'.  相似文献   

8.
The aims of the present study were to investigate the possible involvement of glutamatergic system in seizures induced by diphenyl diselenide in rat pups (postnatal day, 12-14) and to evaluate the role of oxidative stress in seizures induced by diphenyl diselenide/glutamate. Glutamate (4 g/kg of body weight) administered in association with diphenyl diselenide (500 mg/kg of body weight) increased the latency for the appearance of the first seizure episode, reduced lipid peroxidation levels and catalase, Na+,K+-ATPase and δ-ALA-D activities. At the lowest dose (5 mg/kg of body weight), diphenyl diselenide reduced the appearance of seizure episodes induced by glutamate but did not alter the latency for the onset of the first episode. Glutamate uptake was inhibited in glutamate, diphenyl diselenide (the highest dose) and in the association of diphenyl diselenide (both doses) and glutamate groups. Pre-treatment with a N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801 (5S,10R-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate), significantly prolonged the latency for the onset for the first convulsive episode. A non-NMDA receptor antagonist, DNQX (6,7-dinitroquinoxaline-2,3-dione), did not protect seizures induced by diphenyl diselenide. The results of the present study demonstrated that: (a) when diphenyl diselenide and glutamate were administered concomitantly in pups, glutamate was the main responsible for the neurotoxic effects; (b) oxidative stress was not involved in glutamate-induced seizures; (c) NMDA glutamatergic receptors, were at least in part, involved in diphenyl diselenide- induced seizures; and (d) diphenyl diselenide, at the lowest dose, protected seizures induced by glutamate.  相似文献   

9.
The effect of post-treatment with diphenyl diselenide on liver damage induced by 2-nitropropane (2-NP) was examined in male rats. Rats were pre-treated with a single dose of 2-NP (100 mg/kg body weight dissolved in canola oil). Afterward, the animals were post-treated with a dose of diphenyl diselenide (10, 50 or 100 micromol/kg). The parameters that indicate tissue damage such as liver histopathology, plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), urea and creatinine were determined. Since the liver damage induced by 2-NP is related to oxidative damage, lipid peroxidation, superoxide dismutase (SOD), catalase (CAT) and ascorbic acid level were also evaluated. Diphenyl diselenide (50 and 100 micromol/kg) effectively restored the increase of ALT and AST activities and urea level when compared to the 2-NP group. At the higher dose, diphenyl diselenide decreased GGT activity. Treatment with diphenyl diselenide, at all doses, effectively ameliorated the increase of hepatic and renal lipid peroxidation when compared to 2-NP group. 2-NP reduced CAT activity and neither alter SOD activity nor ascorbic acid level. This study points out the involvement of CAT activity in 2-NP-induced acute liver damage and suggests that the post-treatment with diphenyl diselenide was effective in restoring the hepatic damage induced by 2-NP.  相似文献   

10.
The effects of iron-induced lipid peroxidation and of lactic acidosis on [3H]choline uptake were investigated on crude synaptosomes prepared from rat cerebral cortices. Fe2+-induced lipid peroxidation as evidenced from the production of thiobarbituric acid reactives substances (TBARS) was correlated with a decrease in high-affinity choline uptake (HACU). Trolox C, a free radical scavenger, prevented both Fe2+-induced TBARS production and decrease in HACU. Lactic acidosis (pH 6.0 for 30 or 60 min) increased the TBARS production with concomitant decrease in HACU (–48%, –78%, respectively). The acidosis dependent decrease was not reversible following pH 7.4 readjustment after 60 min acidosis. It was not prevented by trolox C, although trolox C inhibited the acidosis-induced production of TBARS. The results suggest that the contribution of acidosis to peroxidative damages is probably of less importance in comparison to other cytotoxic mechanisms.  相似文献   

11.
Horseradish peroxidase (HRP) inhibition and glutathione peroxidase (GPx) activities of ebselen and some related derivatives are described. These studies show that ebselen and ebselen ditelluride (EbTe(2)) with significant antioxidant activity, inhibit the HRP-catalyzed oxidation reactions. In addition, inhibition of lipid peroxidation and singlet oxygen quenching studies were carried out. Although the inhibition of HRP by ebselen is comparable with that of EbTe(2), the inhibitory effect on gamma-radiation induced lipid peroxidation and the GPx activity of ebselen is found to be much higher than that of EbTe(2).  相似文献   

12.
Peroxidation of rat brain synaptosomes was assessed by the formation of thiobarbituric acid reactive products in either 50 mM potassium phosphate buffer (pH 7.4) or pH adjusted saline. In phosphate, addition of Fe2+ resulted in a dose-related increase in lipid peroxidation. In saline, stimulation of lipid peroxidation by Fe2+ was maximal at 30 uM, and was less at concentrations of 100 uM and above. Whereas desferrioxamine caused a dose-related inhibition of iron-dependent lipid peroxidation in phosphate, it stimulated lipid peroxidation with Fe2+ by as much as 7-fold in saline. The effects of desferrioxamine depended upon the oxidation state of iron, and the concentration of desferrioxamine and lipid. The results suggest that lipid and desferrioxamine compete for available iron. The data are consistent with the hypothesis that either phosphate or desferrioxamine may stimulate iron-dependent lipid peroxidation under certain circumstances by favoring formation of Fe2+/Fe3+ ratios.  相似文献   

13.
The hypothesis to be tested in this study is whether the introduction of the chloro group into diphenyl ditelluride molecule (p,p′-dichlorodiphenyl ditelluride, compound 1b) alters the antioxidant and scavenging activity of diphenyl ditelluride (compound 1a) in vitro. The results revealed that 1a and 1b had a potent antioxidant activity in vitro. However, the introduction of a functional group, chloro, into diphenyl ditelluride molecule (1b) did not cause great alterations in the antioxidant action of diphenyl ditelluride against lipid peroxidation, protein carbonyl, and scavenging of 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate) and 2,2′-diphenyl-1-picrylhydrazyl radicals. Based on the in vitro results, different doses (0.25 and 0.75 μmol/kg) of 1a and 1b or vehicle (canola oil, 1 ml/kg) were administered to rats to investigate if the presence of chloro into diphenyl ditelluride molecule reduces its toxicity. The data demonstrate that the chloro group introduced into diphenyl ditelluride molecule did not alter the acute oral toxicity in rats. The administration of compound 1a in rats only altered the urea level, while compound 1b caused alterations in all toxicological parameters analyzed (alanine aminotransferase and aspartate aminotransferase activities, urea and creatinine levels) in plasma of rats. The results of the present investigation support similar antioxidant and scavenging activities of 1a and 1b in rat liver homogenate in vitro. Furthermore, the presence of chloro into diphenyl ditelluride molecule did not alter the mortality index but increased toxicity of diphenyl ditelluride in rats.  相似文献   

14.
The kinetics of iron binding by deferrioxamine B mesylate and the ramifications of this process upon iron-catalyzed lipid peroxidation were assessed. The relative rates of Fe(III) binding by deferrioxamine varied for the chelators tested as follows: ADP greater than AMP greater than citrate greater than histidine greater than EDTA. The addition of a fivefold molar excess of deferrioxamine to that of Fe(III) did not result in complete binding (within 10 min) for any of the Fe(III) chelates tested except ADP:Fe(III). The rates of Fe(III) binding by deferrioxamine were greater at lower pH and when the competing chelator concentration was high in relationship to iron. The relatively slow binding of Fe(III) by deferrioxamine also affected lipid peroxidation, an iron-dependent process. The addition of deferrioxamine to an ascorbate- and ADP:Fe(III)-dependent lipid peroxidation system resulted in a time-dependent inhibition or stimulation of malondialdehyde formation (i.e., lipid peroxidation), depending on the ratio of deferrioxamine to iron. Converse to Fe(III), the rates of Fe(II) binding by deferrioxamine from the chelators tested above were rapid and complete (within 1 min), and resulted in the oxidation of Fe(II) to Fe(III). Lipid peroxidation dependent on Fe(II) autoxidation was stimulated by the addition of deferrioxamine. Malondialdehyde formation in this system was inhibited by the addition of catalase, and a similar extent of lipid peroxidation was achieved by substituting hydrogen peroxide for deferrioxamine. Collectively, these results suggest that the kinetics of Fe(III) binding by deferrioxamine is a slow, variable process, whereas Fe(II) binding is considerably faster. The binding of either valence of iron by deferrioxamine may result in variable effects on iron-catalyzed processes, such as lipid peroxidation, either via slow binding of Fe(III) or the rapid binding of Fe(II) with concomitant Fe(II) oxidation.  相似文献   

15.
Lead (Pb2+) ions accelerate the lipid peroxidation observed when Fe2+ ions are added to phospholipid liposomes at pH 5.5 or pH 7.4, although Pb2+ ions alone do not induce any peroxidation. Similarly, aluminium (Al3+) ions increase Fe2+-dependent liposomal peroxidation at pH 5.5. Both Pb2+ and Al3+ accelerate the peroxidation of erythrocytes induced by high concentrations of H2O2 in the presence of azide, and they also increase the peroxidation that occurs when Fe2+ or Fe2+-ADP is added to rat liver microsomes at pH 7.4. It is proposed that increased lipid peroxidation may contribute to the toxic actions of Pb2+ in humans.  相似文献   

16.
Among tumors in general, Ehrlich ascites tumor cells are particularly resistant to lipid peroxidation. In this study lipid peroxidation was measured in terms of the formation of malondialdehyde-equivalent material in Ehrlich tumor cells during incubation in vitro. It was shown that the high antioxidant potential of these cells could be overcome by a strong radical-promoting agent like ferrous ion. Various amino acids were tested for their capability to augment the effect of Fe(II). Histidine and its 3-methyl-derivative turned out to be the most effective pro-oxidants, whose action could be ascribed to the presence of the imidazole group. From studies with homogenized and denatured cells it was concluded that lipid peroxidation stimulated by Fe(II)-histidinate is an autoxidation process and that no carrier effect of iron by histidine is predominating. The stimulatory action of Fe(II)-histidinate could be completely suppressed by vitamin C, which was shown to be a potent anti-oxidant under the conditions used. The combined application of Fe(II)-histidinate and vitamin C may offer a means to study lipid peroxidation of Ehrlich tumor cells in a controlled manner.  相似文献   

17.
In the present study the authors report on the enhancing effect of aluminum(III) (Al[III]) on iron(II)(Fe[II])-induced lipid peroxidation (LPO) of mice brain homogenate, which occurs in a concentration and time-dependent manner. No evidence of LPO caused by Al alone was found. Both Al(III) and Fe(II) ions induced protein oxidative modifications in mice brain homogenate, in a time and concentrationdependent manner. Aluminum enhances Fe(II)-induced protein oxidative modification at a concentration of 2:1 and 1:1 Al:Fe molar ratios. However, Al suppress Fe(II)-induced protein oxidative modification at a concentration of 0.5:1 Al:Fe molar ratio. Addition of ethylenediaminetetraacetic acid (EDTA) inhibits both LPO and protein oxidative modifications induced by Al(III) and Fe(II) ions. Addition of mannitol and of Superoxide dismutase (SOD) did not show such effects. It is concluded that in mice brain homogenate, Al accelerates Fe(II)-induced LPO. Protein oxidative modifications caused by Fe(II) and/or Al ions are enhanced at high, but suppressed at low concentrations of Al ions. The latter observation suggests a possible biological role of Al as an antioxidant.  相似文献   

18.
The concept that selenium-containing molecules may be better antioxidants than classical antioxidants, has led to the design of synthetic organoselenium compounds. The present study was conducted to evaluate the potential toxicity of long time oral exposure to diphenyl diselenide (PhSe)2 in rabbits. Male adult New Zealand rabbits were divided into four groups, group I served as control; groups II, III and IV received 0.3, 3.0 and 30 ppm of (PhSe)2 pulverized in the chow for 8 months. A number of parameters were examined in blood as indicators of toxicity, including delta-aminolevulinate dehydratase (delta-ALA-D), catalase, glutathione peroxidase (GPx), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine, TBARS, non-protein-SH, ascorbic acid and selenium. The results demonstrated that 6 and 8 months of 30 ppm (PhSe)2 intake caused a significant increase in blood delta-ALA-D activity. Erythrocyte non-protein thiol levels were significantly increased after 2 months of 30 ppm (PhSe)2 intake and then return to control levels after prolonged periods of intake. Ingestion of 3.0 ppm of (PhSe)2 for 8 months significantly increased catalase activity in erythrocytes. Conversely, no alterations in GPx, ALT, AST, TBARS and selenium levels were observed in rabbit serum, conversely, selenium levels in peri-renal adipose tissue were significantly increased after 8 months of 30 ppm (PhSe)2 intake, indicating its great lipophylicity. The present results suggest that diphenyl diselenide was not hepato- or renotoxic for rabbits, but caused some biochemical alterations that can be related to some pro-oxidant activity of the compound (particularly the reduction in Vitamin C).  相似文献   

19.
《Free radical research》2013,47(1):153-159
Ceruloplasmin (CP) effectively inhibited superoxide and ferritin-dependent peroxidation of phospholipid liposomes, using xanthine oxidase or gamma irradiation of water as sources of superoxide. In addition, CP inhibited superoxide-dependent mobilization of iron from ferritin. suggesting that CP inhibited lipid peroxidation by decreasing the availability of iron from ferritin. CP also exhibited some superoxide scavenging activity as evidenced by its inhibition of superoxide-dependent cytochrome c reduction. However, superoxide scavenging by CP did not quantitatively account for its inhibitory effects on iron release. The effects of CP on iron-catalyzed lipid peroxidation in systems containing exogenously added ferrous iron was also investigated. CP exhibited prooxidant and antioxidant effects; CP stimulated at lower concentrations, reached a maximum. and inhibited at higher concentrations. However. the addition of apoferritin inhibited CP and Fe(II)-catalyzed lipid peroxidation at all concentrations of CP. In addition, CP catalyzed the incorporation of Fe(II) into apoferritin. Collectively these data suggest that CP inhibits superoxide and ferritin-dependent lipid peroxidation via its ability to incorporate reductively-mobilized iron into ferritin.  相似文献   

20.
The ability of superoxide anion (O2-) from stimulated human neutrophils (PMNs) to release ferrous iron (Fe2+) from transferrin was assessed. At pH 7.4, unstimulated PMNs released minimal amounts of O2- and failed to facilitate the release of Fe2+ from holosaturated transferrin. In contrast, incubation of phorbol myristate acetate (PMA)-stimulated PMNs with holosaturated transferrin at pH 7.4 enhanced the release of Fe2+ from transferrin eightfold in association with marked generation of O2-. The release of Fe2+ was inhibited by addition of superoxide dismutase (SOD), indicating that the release of Fe2+ was dependent on PMN-derived extracellular O2-. In contrast, at physiologic pH (7.4), incubation of transferrin at physiological levels of iron saturation (e.g. 32%) with unstimulated or PMA stimulated PMNs failed to facilitate the release of Fe2+. The effect of decreasing the pH on the release of Fe2+ from transferrin by PMN-derived O2- was determined. Decreasing the pH greatly facilitated the release of Fe2+ from both holosaturated transferrin and from transferrin at physiological levels of iron saturation by PMN-derived O2-. Release of Fe2+ occurred despite a decrease in the amount of extracellular O2- generated by PMNs in an acidic environment. These results suggest that transferrin at physiologic levels of iron saturation may serve as a source of Fe2+ for biological reactions in disease states where activated phagocytes are present and there is a decrease in tissue pH. The unbound iron could participate in biological reactions including promoting propagation of lipid peroxidation reactions or hydroxyl radical formation following reaction with phagocytic cell-derived hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号