首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proopiomelanocortin (POMC) has been found to be associated with rare Mendelian forms of obesity in children, and, in linkage studies, genomic regions containing the POMC locus have been linked to leptin levels, a predictor of obesity, in white, Mexican‐American, and African‐American families. POMC polymorphisms have not been investigated in detail for association with obesity in the general population. Five single nucleotide polymorphisms (SNPs) (G‐3460C, C17T, G3473A, C3755T, and A7069G) were genotyped on 811 Hispanic individuals in the Insulin Resistance Atherosclerosis Family Study and tested for association with multiple obesity quantitative traits. General and family‐based association analyses for each individual SNP and for haplotypes were performed using the generalized estimating equation and quantitative pedigree disequilibrium test (QPDT), respectively. Modest but consistent associations were observed for SNP C3755T, with p values ranging from 0.011 to 0.045 for association with BMI, waist, visceral adipose tissue, and subcutaneous adipose tissue. G‐3460C, G3473A, and A7069G were also found to be associated with additional obesity measurements (p value 0.025 to 0.04), with comparable levels of evidence observed for linkage disequilibrium between these traits and these SNPs. Results of the haplotype analyses were also consistent with the single SNP analysis, with haplotypes containing C3755T showing the greatest evidence of association (p values ranging 0.004 to 0.048). Monte Carlo simulations (gene dropping) that account for the number of comparisons and the correlation structure indicate that the multivariate significance for these obesity traits with these polymorphisms was p = 0.0091. Collectively, the POMC polymorphisms showed consistent evidence for association with obesity traits in Hispanic Americans across several analytical approaches using SNP and haplotype analysis. These results support the hypothesis that POMC contributes genetically to the development of obesity.  相似文献   

2.
The gene GAD2 encoding the glutamic acid decarboxylase enzyme (GAD65) is a positional candidate gene for obesity on Chromosome 10p11–12, a susceptibility locus for morbid obesity in four independent ethnic populations. GAD65 catalyzes the formation of γ-aminobutyric acid (GABA), which interacts with neuropeptide Y in the paraventricular nucleus to contribute to stimulate food intake. A case-control study (575 morbidly obese and 646 control subjects) analyzing GAD2 variants identified both a protective haplotype, including the most frequent alleles of single nucleotide polymorphisms (SNPs) +61450 C>A and +83897 T>A (OR = 0.81, 95% CI [0.681–0.972], p = 0.0049) and an at-risk SNP (−243 A>G) for morbid obesity (OR = 1.3, 95% CI [1.053–1.585], p = 0.014). Furthermore, familial-based analyses confirmed the association with the obesity of SNP +61450 C>A and +83897 T>A haplotype (χ2 = 7.637, p = 0.02). In the murine insulinoma cell line βTC3, the G at-risk allele of SNP −243 A>G increased six times GAD2 promoter activity (p < 0.0001) and induced a 6-fold higher affinity for nuclear extracts. The −243 A>G SNP was associated with higher hunger scores (p = 0.007) and disinhibition scores (p = 0.028), as assessed by the Stunkard Three-Factor Eating Questionnaire. As GAD2 is highly expressed in pancreatic β cells, we analyzed GAD65 antibody level as a marker of β-cell activity and of insulin secretion. In the control group, −243 A>G, +61450 C>A, and +83897 T>A SNPs were associated with lower GAD65 autoantibody levels (p values of 0.003, 0.047, and 0.006, respectively). SNP +83897 T>A was associated with lower fasting insulin and insulin secretion, as assessed by the HOMA-B% homeostasis model of β-cell function (p = 0.009 and 0.01, respectively). These data support the hypothesis of the orexigenic effect of GABA in humans and of a contribution of genes involved in GABA metabolism in the modulation of food intake and in the development of morbid obesity.  相似文献   

3.
4.
5.
The aim of this study was to investigate a series of single-nucleotide polymorphisms (SNPs) in the genes MC2R, MC3R, MC4R, MC5R, POMC, and ENPP1 for association with obesity. Twenty-five SNPs (2-7 SNPs/gene) were genotyped in 246 Finns with extreme obesity (BMI > or = 40 kg/m2) and in 481 lean subjects (BMI 20-25 kg/m2). Of the obese subjects, 23% had concomitant type 2 diabetes. SNPs and SNP haplotypes were tested for association with obesity and type 2 diabetes. Allele frequencies differed between obese and lean subjects for two SNPs in the ENPP1 gene, rs1800949 (P = 0.006) and rs943003 (P = 0.0009). These SNPs are part of a haplotype (rs1800949 C-rs943003 A), which was observed more frequently in lean subjects compared to obese subjects (P = 0.0007). Weaker associations were detected between the SNPs rs1541276 in the MC5R, rs1926065 in the MC3R genes and obesity (P = 0.04 and P = 0.03, respectively), and between SNPs rs2236700 in the MC5R, rs2118404 in the POMC, rs943003 in the ENPP1 genes and type 2 diabetes (P = 0.03, P = 0.02 and P = 0.02, respectively); these associations did not, however, remain significant after correction for multiple testing. In conclusion, a previously unexplored ENPP1 haplotype composed of SNPs rs1800949 and rs943003 showed suggestive evidence for association with adult-onset morbid obesity in Finns. In this study, we did not find association between the frequently studied ENPP1 K121Q variant, nor SNPs in the MCR or POMC genes and obesity or type 2 diabetes.  相似文献   

6.
Several polymorphisms in the APOA5 gene have been associated with increased plasma triglyceride (TG) concentrations. However, associations between APOA5 and lipoprotein subclasses, remnant-like particles (RLPs), and cardiovascular disease (CVD) risk have been less explored. We investigated associations of five APOA5 single-nucleotide polymorphisms (SNPs; -1131T>C, -3A>G, 56C>G IVS3+ 476G>A, and 1259T>C) with lipoprotein subfractions and CVD risk in 1,129 men and 1,262 women participating in the Framingham Heart Study. Except for the 56C>G SNP, the other SNPs were in significant linkage disequilibria, resulting in three haplotypes (11111, 22122, and 11211) representing 98% of the population. SNP analyses revealed that the -1131T>C and 56C>G SNPs were significantly associated with higher plasma TG concentrations in both men and women. For RLP and lipoprotein subclasses, we observed gender-specific association for the -1131T>C and 56C>G SNPs. Female carriers of the -1131C allele had higher RLP concentrations, whereas in males, significant associations for RLPs were observed for the 56G allele. Moreover, haplotype analyses confirmed these findings and revealed that the 22122 and 11211 haplotypes exhibited different associations with HDL cholesterol concentrations. In women, the -1131C allele was associated with a higher hazard ratio for CVD (1.85; 95% confidence interval, 1.03-3.34; P = 0.04), in agreement with the association of this SNP with higher RLPs.  相似文献   

7.
The gene GAD2 encoding the glutamic acid decarboxylase enzyme (GAD65) is a positional candidate gene for obesity on Chromosome 10p11–12, a susceptibility locus for morbid obesity in four independent ethnic populations. GAD65 catalyzes the formation of γ-aminobutyric acid (GABA), which interacts with neuropeptide Y in the paraventricular nucleus to contribute to stimulate food intake. A case-control study (575 morbidly obese and 646 control subjects) analyzing GAD2 variants identified both a protective haplotype, including the most frequent alleles of single nucleotide polymorphisms (SNPs) +61450 C>A and +83897 T>A (OR = 0.81, 95% CI [0.681–0.972], p = 0.0049) and an at-risk SNP (−243 A>G) for morbid obesity (OR = 1.3, 95% CI [1.053–1.585], p = 0.014). Furthermore, familial-based analyses confirmed the association with the obesity of SNP +61450 C>A and +83897 T>A haplotype (χ2 = 7.637, p = 0.02). In the murine insulinoma cell line βTC3, the G at-risk allele of SNP −243 A>G increased six times GAD2 promoter activity (p < 0.0001) and induced a 6-fold higher affinity for nuclear extracts. The −243 A>G SNP was associated with higher hunger scores (p = 0.007) and disinhibition scores (p = 0.028), as assessed by the Stunkard Three-Factor Eating Questionnaire. As GAD2 is highly expressed in pancreatic β cells, we analyzed GAD65 antibody level as a marker of β-cell activity and of insulin secretion. In the control group, −243 A>G, +61450 C>A, and +83897 T>A SNPs were associated with lower GAD65 autoantibody levels (p values of 0.003, 0.047, and 0.006, respectively). SNP +83897 T>A was associated with lower fasting insulin and insulin secretion, as assessed by the HOMA-B% homeostasis model of β-cell function (p = 0.009 and 0.01, respectively). These data support the hypothesis of the orexigenic effect of GABA in humans and of a contribution of genes involved in GABA metabolism in the modulation of food intake and in the development of morbid obesity.  相似文献   

8.
Eotaxin1 plays a pivotal role in eosinophil-associated inflammation. Previously, we demonstrated 14 single-nucleotide polymorphisms (SNPs) in the human eotaxin1 gene and the association between the EOT+67G>A allele and the level of IgE. In this study, we investigated the association between the SNPs and plasma eotaxin1 levels, peripheral blood eosinophil counts, and PC20 methacholine values in normal and asthmatic subjects, and the effects of SNPs on the process of eotaxin1 production. The EOT-576C>T and EOT-384A>G polymorphisms and haplotypes (ht1 and ht4) were significantly associated with plasma eotaxin1 levels in the asthmatics (p < 0.001-0.040). The log [plasma eotaxin1] values correlated with the log [serum total IgE] values in the asthmatics and the normal controls (p = 0.012 and p = 0.004, respectively), and with the log [PC20 methacholine] values in the asthmatics (p = 0.014). A DNA-protein complex was formed with EOT-384A>G, but not with the other SNPs of the promoter. The interaction was stronger with the minor allele than with the common allele, and was reduced upon TNF-alpha exposure. TNF-alpha-stimulated PBMCs from the asthmatics with the minor allele homozygote expressed significantly lower levels of eotaxin1 mRNA than those from individuals with the common allele. The EOT+67G>A polymorphism, which substitutes alanine with threonine, did not affect eotaxin1 production or activity. Our data suggest that the EOT-384A>G SNP participates in the regulation of eotaxin1 expression by providing a potential binding site for a repressor, and that the ANOVA of EOT-384A>G may predict asthma phenotypes.  相似文献   

9.
The T-cell immunoglobulin and mucin domain 1 (TIM-1) is known to be associated with susceptibility to rheumatoid arthritis (RA). We investigated the association of four single-nucleotide polymorphisms (SNPs) in the promoter region of the TIM-1 gene with susceptibility to RA in a Chinese Hui ethnic minority group. Using RFLP or sequence specific primer-PCR, 118 RA patients and 118 non-arthritis control individuals were analyzed for the -1637A>G, -1454G>A, -416G>C, and -232A>G SNPs in the TIM-1 gene. The polymorphisms -232A>G and -1637A>G in the promoter region of TIM-1 were found to be associated with susceptibility to the RA gene in the Hui population, while -416G>C and -1454G>A SNPs were not. Of these, the polymorphism of -232A>G is inconsistent with that found in a Korean population, suggesting that genetic variations of the TIM-1 gene contribute to RA susceptibility in different ways among different populations. Based on haplotype analysis, individuals with haplotypes AGCA (Χ(2) = 22.0, P < 0.01, OR (95%CI) >1), AGCG (Χ(2) = 18.16, P < 0.01, OR (95%CI) >1) and AGGA (Χ(2) = 5.58, P < 0.05, OR (95%CI) >1) are at risk to develop RA in the Chinese Hui population; those with the GAGA (Χ(2) = 7.44, P < 0.01, OR (95%CI) <1) haplotype may have a decreased likelihood of RA. GGCA and GGCG are more common in both RA and non-RA subjects. We conclude that -1637A>G and -232A>G polymorphisms of TIM-1 are associated with susceptibility to RA in the Chinese Hui population.  相似文献   

10.
ABSTRACT: BACKGROUND: The PRKAG3 gene encodes the gamma3 subunit of adenosine monophosphate activated protein kinase (AMPK), a protein that plays a key role in energy metabolism in skeletal muscle. Nonsynonymous single nucleotide polymorphisms (SNPs) in this gene such as I199V are associated with important pork quality traits. The objective of this study was to investigate the relationship between gene expression of the PRKAG3 gene, SNP variation in the PRKAG3 promoter and meat quality phenotypes in pork. RESULTS: PRKAG3 gene expression was found to correlate with a number of traits relating to glycolytic potential (GP) and intramuscular fat (IMF) in three phenotypically diverse F1 crosses comprising of 31 Large White, 23 Duroc and 32 Pietrain sire breeds. The majority of associations were observed in the Large White cross. There was a significant association between genotype at the g.-311A>G locus and PRKAG3 gene expression in the Large White cross. In the same population, ten novel SNPs were identified within a 1.3 kb region spanning the promoter and from this three major haplotypes were inferred. Two tagging SNPs (g.- 995A>G and g.-311A>G) characterised the haplotypes within the promoter region being studied. These two SNPs were subsequently genotyped in larger populations consisting of Large White (n = 98), Duroc (n = 99) and Pietrain (n = 98) purebreds. Four major haplotypes including promoter SNP's g.-995A>G and g.-311A>G and I199V were inferred. In the Large White breed, HAP1 was associated with IMF% in the M. longissmus thoracis et lumborum (LTL) and driploss%. HAP2 was associated with IMFL% GP-influenced traits pH at 24 hr in LTL (pHULT), pH at 45 min in LTL (pH45LT) and pH at 45 min in the M. semimembranosus muscle (pH45SM). HAP3 was associated with driploss%, pHULT pH45LT and b* Minolta. In the Duroc breed, associations were observed between HAP1 and Driploss% and pHUSM. No associations were observed with the remaining haplotypes (HAP2, HAP3 and HAP4) in the Duroc breed. The Pietrain breed was monomorphic in the promoter region. The I199V locus was associated with several GP-influenced traits across all three breeds and IMF% in the Large White and Pietrain breed. No significant difference in promoter function was observed for the three main promoter haplotypes when tested in vitro. CONCLUSION: Gene expression levels of the porcine PRKAG3 are associated with meat quality phenotypes relating to glycolytic potential and IMF% in the Large White breed, while SNP variation in the promoter region of the gene is associated with PRKAG3 gene expression and meat quality phenotypes.  相似文献   

11.
12.
Common polymorphisms in the fat mass and obesity-associated gene (FTO) have shown strong association with obesity in several populations. In the present study, we explored the association of FTO gene polymorphisms with obesity and other biochemical parameters in the Mexican population. We also assessed FTO gene expression levels in adipose tissue of obese and nonobese individuals. The study comprised 788 unrelated Mexican-Mestizo individuals and 31 subcutaneous fat tissue biopsies from lean and obese women. FTO single-nucleotide polymorphisms (SNPs) rs9939609, rs1421085, and rs17817449 were associated with obesity, particularly with class III obesity, under both additive and dominant models (P = 0.0000004 and 0.000008, respectively). These associations remained significant after adjusting for admixture (P = 0.000003 and 0.00009, respectively). Moreover, risk alleles showed a nominal association with lower insulin levels and homeostasis model assessment of B-cell function (HOMA-B), and with higher homeostasis model assessment of insulin sensitivity (HOMA-S) only in nonobese individuals (P (dom) = 0.031, 0.023, and 0.049, respectively). FTO mRNA levels were significantly higher in subcutaneous fat tissue of class III obese individuals than in lean individuals (P = 0.043). Risk alleles were significantly associated with higher FTO expression in the class III obesity group (P = 0.047). In conclusion, FTO is a major risk factor for obesity (particularly class III) in the Mexican-Mestizo population, and is upregulated in subcutaneous fat tissue of obese individuals.  相似文献   

13.
Adiponectin, coded for by the APM1 gene, is a novel adipocyte-derived hormone implicated in energy homeostasis and obesity. Several genetic studies have observed evidence of association between APM1 gene polymorphisms and features of the metabolic syndrome, such as insulin resistance and obesity. As part of a comprehensive genetic analysis of the APM1 gene, we have screened 96 unrelated individuals for polymorphisms in the promoter, coding regions, and 3untranslated region (UTR). Three promoter single-nucleotide polymorphisms (SNPs), two rare coding SNPs (G113A and T1233C), and 13 SNPs in the 3UTR were identified. Eighteen SNPs were genotyped in 811 Hispanic individuals from 45 families in the IRAS Family Study (IRASFS). SNPs were tested for association with six obesity quantitative traits (body mass index, waist, waist:hip ratio, subcutaneous adipose tissue, visceral adipose tissue, and visceral:subcutaneous ratio). Significant evidence of association to at least one of the obesity traits was identified in seven of the 18 SNPs (<0.001–0.05). The promoter SNP INS CA-11156 was the most consistently associated SNP and was associated significantly with all measures of obesity, except the visceral:subcutaneous ratio (P-values 0.009–0.03). Haplotype analysis supported this evidence of association, with haplotypes containing an insertion of one CA repeat at position –11156 consistently being associated with lower obesity values (P-value <0.001–0.05). The adiponectin polymorphisms, in particular those in the promoter region, thus show significant association with obesity measures in the Hispanic population. Additional studies are needed to confirm our findings and determine which polymorphism causes the functional effect.  相似文献   

14.

Background

Obesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to obesity are not very well understood. We have performed a genome wide association study (GWA) for early onset (extreme) obesity.

Methodology/Principal Findings

a) GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single nucleotide polymorphisms) for early onset extreme obesity based on 487 extremely obese young German individuals and 442 healthy lean German controls; b) confirmatory analyses on 644 independent families with at least one obese offspring and both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency ≥10%) with the lowest p-values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) within one linkage disequilibrium (LD) block including the GWA SNP rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.13×10−7, corrected p = 0.0494; odds ratio (OR)CT 1.67, 95% confidence interval (CI) 1.22–2.27; ORTT 2.76, 95% CI 1.88–4.03) belonged to the 15 SNPs showing the strongest evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six FTO SNPs we chose only two representing the LD bock). For both FTO SNPs the initial association was confirmed (both Bonferroni corrected p<0.01). However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium.

Conclusions/Significance

Our GWA for extreme early onset obesity substantiates that variation in FTO strongly contributes to early onset obesity. This is a further proof of concept for GWA to detect genes relevant for highly complex phenotypes. We concurrently show that nine additional SNPs with initially low p-values in the GWA were not confirmed in our family study, thus suggesting that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings.  相似文献   

15.
16.
Zhang ZB  Yu LJ  Yang KJ  Xu LW  Sheng TX  Hao P  Wang YP  Meng FP 《遗传》2011,33(1):54-59
为了探讨延边朝鲜族和汉族脂联素基因启动子单核苷酸多态性(SNPs)与原发性高血压(EH)的关系, 文章采用PCR产物直接测序方法检测了220例EH患者和268例对照个体的脂联素启动子5个SNPs位点: -11426A>G(rs16861194)、-11391G>A(rs17300539)、-11377C>G(rs62620185)、-11156insCA(rs60806105)、-11043C>T(rs76786086), 氧化酶法测定空腹血糖、甘油三酯、总胆固醇、低密度脂蛋白、高密度脂蛋白, 酶联免疫吸附法(ELISA)测定血浆脂联素和胰岛素。结果显示: (1) -11426A>G、-11377C>G 和-11156insCA 3个位点具有多态性, 且它们的基因型频率分布符合Hardy-Weinberg平衡定律(P>0.05), -11391G>A和-11043C>T位点无多态性; (2) -11426A>G和-11156insCA呈完全连锁不平衡(D’=1; r2=1); (3) -11426G基因频率比较, 朝鲜族(21.10%)高于汉族(12.05%), 汉族EH组高于对照组; -11377C>G的基因型和基因频率在朝鲜族和汉族间及同一民族内EH组和对照组间比较均无统计学意义(P>0.05); (4)单倍型?11426G -11377C的频率, 汉族EH组高于对照组(P<0.05), 朝鲜族EH组和对照组比较无统计学意义(P>0.05); (5)EH组的血浆脂联素水平明显低于对照组(P<0.001)。据此得出结论: (1)首次发现?11426A>G和?11156insCA呈完全连锁不平衡, -11426 A>G的多态性在朝鲜族和汉族中存在民族差异; (2) -11426 G和-11426G -11377C是延边汉族EH的危险因子和危险单倍型, 但不是朝鲜族的; (3)低血浆脂联素是延边朝鲜族和汉族EH的重要危险因素; (4)血浆脂联素水平与-11426A>G基因型无关。  相似文献   

17.
In this study, polymorphisms in genes encoding porcine adiponectin (ADIPOQ) and its receptors (ADIPOR1 and ADIPOR2) were evaluated for associations with reproductive traits in a Landrace sow population. Sixteen SNPs were identified, and among these, associations were found between reproductive traits and five SNPs. Heterozygous multiparous females for SNP ADIPOQEF601160:c.178G>A had fewer stillborn piglets (P < 0.05) and shorter weaning-to-oestrus intervals (P < 0.05). Multiparous females bearing the mutant allele for SNP ADIPOQEF601160:c.*1094_1095insC gave birth to fewer stillborn piglets (P < 0.05). In addition, selection for the ADIPOQ [A;C] haplotype is expected to result in multiparous sows having the lowest number of stillborn piglets and shorter weaning-to-oestrus intervals. In second-parity sows, the polymorphism in ADIPOR1 (AY856513:c.*129A>C) showed significant associations with live-born (P < 0.01) and stillborn (P < 0.05) piglets. In multiparous sows, a significant association was observed for an ADIPOR2 polymorphism (AY856514:c.*112G>A), with the c.*112GA genotype associated with shorter weaning-to-oestrus intervals (P < 0.01). Haplotype analyses of ADIPOR2 SNPs revealed that selection in favour of the [A;C] haplotype and against the [G;G] haplotype may result in sows having an increased number of live-born piglets and shorter weaning-to-oestrus intervals. We have therefore described specific SNPs and haplotypes that are associated with large litter size, fewer stillborn and mummified piglets and shorter weaning-to-oestrus intervals. Selection for these SNPs and haplotypes is a strategy to improve reproductive success in pigs.  相似文献   

18.
Single nucleotide polymorphisms (SNPs) are widely used when investigators try to map complex disease genes. Although biallelic SNP markers are less informative than microsatellite markers, one can increase their information content by using haplotypes. However, assigning haplotypes (i.e., assigning phase) correctly can be problematic in the presence of SNP heterozygosity. For example, a doubly heterozygous individual, with genotype 12, 12, could have haplotypes 1-1/2-2 or 1-2/2-1 with equal probability; in the absence of additional information, there is no way to determine which haplotype is correct. Thus an algorithm that assigns haplotypes to such an individual will assign the wrong one 50% of the time. We have studied the frequency of haplotype misassignments, i.e., haplotypes that are misassigned solely because of inherent marker ambiguity (not because of errors in genotyping or calculation). We examined both SNPs and microsatellite markers. We used the computer programs GENEHUNTER and SIMWALK to assign the haplotypes. We simulated (a) families with 1-5 children, (b) haplotypes involving different numbers of marker loci (3, 5, 7 and 10 loci, all in linkage equilibrium), and (c) different allele frequencies. Misassignment rates are highest (a) in small families, (b) with many SNP loci, and (c) for loci with the greatest heterozygosity (i.e., where both alleles have frequency 0.5). For example, for triads (i.e., one-child families with both parents genotyped), misassignment rates for SNPs can reach almost 50%. Family sizes of 4-5 children are required in order to ensure a misassignment frequency of < or = 5% for ten-SNP haplotypes with allele frequencies of 0.25-0.5. For microsatellites, a family size of at least 2-3 children is necessary to keep haplotyping misassignments < or = 5%. Finally, we point out that it is misleading for a computer program to yield haplotype assignments without indicating that they may have been misassigned, and we discuss the implications of these misassignments for association and linkage analysis.  相似文献   

19.
Adiponectin, which is encoded by the ADIPOQ gene, has been shown to modulate insulin sensitivity and glucose homeostasis. Plasma adiponectin levels are decreased in type 2 diabetes and obesity. Genetic variations within the ADIPOQ gene are associated with decreased adiponectin hormone levels. To analyze specific single-nucleotide polymorphisms (SNPs) and their association with T2D, 365 German subjects with T2D and 323 control subjects were screened. Three common SNPs - +45T>G in exon 2, and 2 promoter variants SNPs -11391G>A and -11377C>G - were analyzed. We found that the variant allele of SNP -11391G>A was significantly more frequent in the diabetic patient group than in the control group (p=0.003). Carrying the haplotype of SNP -11391A and SNP -11377C was associated with a 1.50-fold (p=0.03) increase in diabetes risk. The combination of the A-C haplotype and the G-C haplotype was associated with significantly elevated diabetes risk (OR=2.82 (95% CI: 1.35-5.91), p=0.006) after correction for BMI and age. Our observations suggest that diploid combinations of haplotype in the adiponectin gene promoter region contribute to the genetic risk of T2D in individuals from a German Caucasian population.  相似文献   

20.
We investigated the RGS4 as a susceptibility gene for schizophrenia in Chinese Han (184 trios and 138 sibling pairs, a total of 322 families) and Scottish (580 cases and 620 controls) populations using both a family trio and case-control design. Both the samples had statistical power greater than 70% to detect a heterozygote genotype relative risk of >1.2 for frequent RGS4-risk alleles. We genotyped four single nucleotide polymorphisms (SNPs) which have previously been associated with schizophrenia as either individually or part of haplotypes. Allele frequencies and linkage disequilibrium between the SNPs was similar in the two populations. In the Chinese sample, no individual SNPs or any of their haplotypes were associated with schizophrenia. In the Scottish population, one SNP (SNP7) was significantly over-represented in the cases compared with the controls (0.44 vs. 0.38; A allele; chi(2) 7.08, P = 0.011 after correction for correlation between markers by permutation testing). One two-marker haplotype, composed of alleles T and A of SNP4 and SNP7, respectively, showed individual significance after correction by permutation testing (chi(2) 6.8; P = 0.04). None of the full four-marker haplotypes showed association, including the G-G-G-G haplotype previously associated with schizophrenia in more than one sample and the A-T-A-A haplotype. Thus, our data do not directly replicate previous associations of RGS4, but association with SNP 7 in the Scottish population provides some support for a role in schizophrenia susceptibility. We cannot conclusively exclude RGS4, as associated haplotypes are likely to be surrogates for unknown causative alleles, whose relationship with overlying haplotypes may differ between the population groups. Differences in the association seen across the two populations could result from methodological factors such as diagnostic differences but most likely result from ethnic differences in haplotype structures within RGS4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号