首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

Background

Despite a plethora of bioluminescent reporter genes being cloned and used for cell assays and molecular imaging purposes, the simultaneous monitoring of multiple events in small animals is still challenging. This is partly attributable to the lack of optimization of cell reporter gene expression as well as too much spectral overlap of the color-coupled reporter genes. A new red emitting codon-optimized luciferase reporter gene mutant of Photinus pyralis, Ppy RE8, has been developed and used in combination with the green click beetle luciferase, CBG99.

Principal Findings

Human embryonic kidney cells (HEK293) were transfected with vectors that expressed red Ppy RE8 and green CBG99 luciferases. Populations of red and green emitting cells were mixed in different ratios. After addition of the shared single substrate, D-luciferin, bioluminescent (BL) signals were imaged with an ultrasensitive cooled CCD camera using a series of band pass filters (20 nm). Spectral unmixing algorithms were applied to the images where good separation of signals was observed. Furthermore, HEK293 cells that expressed the two luciferases were injected at different depth in the animals. Spectrally-separate images and quantification of the dual BL signals in a mixed population of cells was achieved when cells were either injected subcutaneously or directly into the prostate.

Significance

We report here the re-engineering of different luciferase genes for in vitro and in vivo dual color imaging applications to address the technical issues of using dual luciferases for imaging. In respect to previously used dual assays, our study demonstrated enhanced sensitivity combined with spatially separate BL spectral emissions using a suitable spectral unmixing algorithm. This new D-luciferin-dependent reporter gene couplet opens up the possibility in the future for more accurate quantitative gene expression studies in vivo by simultaneously monitoring two events in real time.  相似文献   

2.
Our understanding of how and when breast cancer cells transit from established primary tumors to metastatic sites has increased at an exceptional rate since the advent of in vivo bioluminescent imaging technologies 1-3. Indeed, the ability to locate and quantify tumor growth longitudinally in a single cohort of animals to completion of the study as opposed to sacrificing individual groups of animals at specific assay times has revolutionized how researchers investigate breast cancer metastasis. Unfortunately, current methodologies preclude the real-time assessment of critical changes that transpire in cell signaling systems as breast cancer cells (i) evolve within primary tumors, (ii) disseminate throughout the body, and (iii) reinitiate proliferative programs at sites of a metastatic lesion. However, recent advancements in bioluminescent imaging now make it possible to simultaneously quantify specific spatiotemporal changes in gene expression as a function of tumor development and metastatic progression via the use of dual substrate luminescence reactions. To do so, researchers take advantage for two light-producing luciferase enzymes isolated from the firefly (Photinus pyralis) and sea pansy (Renilla reniformis), both of which react to mutually exclusive substrates that previously facilitated their wide-spread use in in vitro cell-based reporter gene assays 4. Here we demonstrate the in vivo utility of these two enzymes such that one luminescence reaction specifically marks the size and location of a developing tumor, while the second luminescent reaction serves as a means to visualize the activation status of specific signaling systems during distinct stages of tumor and metastasis development. Thus, the objectives of this study are two-fold. First, we will describe the steps necessary to construct dual bioluminescent reporter cell lines, as well as those needed to facilitate their use in visualizing the spatiotemporal regulation of gene expression during specific steps of the metastatic cascade. Using the 4T1 model of breast cancer metastasis, we show that the in vivo activity of a synthetic Smad Binding Element (SBE) promoter was decreased dramatically in pulmonary metastasis as compared to that measured in the primary tumor 4-6. Recently, breast cancer metastasis was shown to be regulated by changes within the primary tumor microenvironment and reactive stroma, including those occurring in fibroblasts and infiltrating immune cells 7-9. Thus, our second objective will be to demonstrate the utility of dual bioluminescent techniques in monitoring the growth and localization of two unique cell populations harbored within a single animal during breast cancer growth and metastasis.  相似文献   

3.
In vivo genetic reporter systems using luciferase enzymes enable the real-time monitoring of gene expression in living cells. We have challenged concurrent monitoring of two independent promoter activities within the same cells to precisely compare their characteristics in vivo. In this report, we describe a simple dual-reporter system capable of simultaneously monitoring two promoter activities in living cyanobacterial cells. Two railroad-worm luciferases catalyzing the bioluminescent emissions of different colors served as the dual reporters; each emission was successfully separated by interference filters to estimate the individual bioluminescence signals using photomultiplier tubes. Using this system, we clearly demonstrated the difference in the expression profiles between promoters in the same cells.  相似文献   

4.
Luciferase from the North American firefly (Photinis pyralis) is a useful reporter gene in vivo, allowing noninvasive imaging of tumor growth, metastasis, gene transfer, drug treatment, and gene expression. Luciferase is heat labile with an in vitro halflife of approximately 3 min at 37 degrees C. We have characterized wild type and six thermostabilized mutant luciferases. In vitro, mutants showed half-lives between 2- and 25-fold higher than wild type. Luciferase transfected mammalian cells were used to determine in vivo half-lives following cycloheximide inhibition of de novo protein synthesis. This showed increased in vivo thermostability in both wild-type and mutant luciferases. This may be due to a variety of factors, including chaperone activity, as steady-state luciferase levels were reduced by geldanamycin, an Hsp90 inhibitor. Mice inoculated with tumor cells stably transfected with mutant or wild-type luciferases were imaged. Increased light production and sensitivity were observed in the tumors bearing thermostable luciferase. Thermostable proteins increase imaging sensitivity. Presumably, as more active protein accumulates, detection is possible from a smaller number of mutant transfected cells compared to wild-type transfected cells.  相似文献   

5.
Luciferases have proven to be useful tools in advancing our understanding of biologic processes. Having a multitude of bioluminescent reporters with different properties is highly desirable. We characterized codon-optimized thermostable green- and red-emitting luciferase variants from the Italian firefly Luciola italica for mammalian gene expression in culture and in vivo. Using lentivirus vectors to deliver and stably express these luciferases in mammalian cells, we showed that both variants displayed similar levels of activity and protein half-lives as well as similar light emission kinetics and higher stability compared to the North American firefly luciferase. Further, we characterized the red-shifted variant for in vivo bioluminescence imaging. Intramuscular injection of tumor cells stably expressing this variant into nude mice yielded a robust luciferase activity. Light emission peaked at 10 minutes post-d-luciferin injection and retained > 60% of signal at 1 hour. Similarly, luciferase activity from intracranially injected glioma cells expressing the red-shifted variant was readily detected and used as a marker to monitor tumor growth over time. Overall, our characterization of these codon-optimized luciferases lays the groundwork for their further use as bioluminescent reporters in mammalian cells.  相似文献   

6.
Bacterial luciferases and the genes encoding these light-emitting enzymes have an increasing number of applications in biological sciences. Temperature lability and the heterodimeric nature of these luciferases have been the major obstacles for their widespread use, for instance, as genetic reporters. Escherichia coli expressing wild-type Photorhabdus luminescens luciferase was found to produce eight times more light than the corresponding Vibrio harveyi luciferase clone in vivo at 37 degrees C. Three monomeric luciferases were created by translationally fusing the two genes encoding luxA and luxB proteins of P. luminescens. These clones were equally active in producing light in vivo when cultivated at 37 degrees C compared to cultivation at 30 degrees C. The fusion containing the longest linker showed the highest activity. In vitro, the monomeric luciferases were less active having at best 20% of activity of the wild-type enzyme due to the partial formation of insoluble aggregates. The results suggest that P. luminescens luciferase and monomeric derivatives thereof should be more suitable than the corresponding V. harveyi enzyme to be used as reporters in cell types which need cultivation at elevated temperatures.  相似文献   

7.
We recently reported the cDNA sequences of 11 copepod luciferases from the superfamily Augaptiloidea in the order Calanoida. They were classified into two groups, Metridinidae and Heterorhabdidae/Lucicutiidae families, by phylogenetic analyses. To elucidate the evolutionary processes, we have now further isolated 12 copepod luciferases from Augaptiloidea species (Metridia asymmetrica, Metridia curticauda, Pleuromamma scutullata, Pleuromamma xiphias, Lucicutia ovaliformis and Heterorhabdus tanneri). Codon-based synonymous/nonsynonymous tests of positive selection for 25 identified copepod luciferases suggested that positive Darwinian selection operated in the evolution of Heterorhabdidae luciferases, whereas two types of Metridinidae luciferases had diversified via neutral mechanism. By in silico analysis of the decoded amino acid sequences of 25 copepod luciferases, we inferred two protein sequences as ancestral copepod luciferases. They were expressed in HEK293 cells where they exhibited notable luciferase activity both in intracellular lysates and cultured media, indicating that the luciferase activity was established before evolutionary diversification of these copepod species.  相似文献   

8.
Secreted reporters detected in body fluids (blood, serum or urine) have shown to be simple and useful tools for ex vivo real-time monitoring of in vivo biological processes. Here we explore the most commonly used secreted blood reporters in experimental animals: secreted alkaline phosphatase, soluble marker peptides derived from human carcinoembryonic antigen and human chorionic gonadotropin, as well as Gaussia luciferase. We also comment on other recently discovered secreted luciferases and their potential use as blood reporters for multiplexing applications.  相似文献   

9.
Firefly luciferase genes have been isolated from approximately 20 species of Lampyrinae, Luciolinae, and Photurinae. These are mostly nocturnal luminescent species that use light signals for sexual communication. In this study, we isolated three cDNAs for firefly luciferase from Psilocladinae (Cyphonocerus ruficollis) and Ototretinae (Drilaster axillaris and Stenocladius azumai), which are diurnal non-luminescent or weakly luminescent species that may use pheromones for communication. The amino acid sequences deduced from the three cDNAs showed 81-89% identities to each other and 60-81% identities with known firefly luciferases. The three purified recombinant proteins showed luminescence and fatty acyl-CoA synthetic activities, as observed in other firefly luciferases. The emission maxima by the three firefly luciferases (λmax, 545-546 nm) were shorter than those by known luciferases from the nocturnal fireflies (λmax, 550-568 nm). These results suggest that the primary structures and enzymatic properties of luciferases are conserved in Lampyridae, but the luminescence colors were red-shifted in nocturnal species compared to diurnal species.  相似文献   

10.
Bioluminescence is a process during which light in the visible spectrum is emitted as a consequence of an enzymatic reaction catalyzed by luciferases. Luciferases have been identified mainly in marine organisms and are used for several biological purposes include camouflage, repulsion, attraction, communication and illumination. Some of the currently known luciferases have become indispensible tools in modern molecular biology and are used for diverse applications such as autoinducer-1 activity assays, promoter test assays in both prokaryotes and eukaryotes, imaging of bacterial infections in live animals, in vivo activity assays genes involved in host response and disease and monitoring of bacterial contaminations of food products. With the present review, the authors intend to give an overview on the currently used bacterial luciferase reporter systems, their methodologies and applications and compare them to other reporter systems.  相似文献   

11.
Bioluminescence is widely used in biosensors. For water toxicity analysis, the naturally bioluminescent bacteria Vibrio fischeri have been used extensively. We investigated the suitability of two new beetle luciferases for Escherichia coli light off biosensors: Macrolampis firefly and Pyrearinus termitilluminans click beetle luciferases. The bioluminescence detection assay using this system is very sensitive, being comparable or superior to V. fischeri. The luciferase of P. termitilluminans produces a strong and sustained bioluminescence that is useful for less sensitive and inexpensive assays that require integration of the emission, whereas Macrolampis luciferase displays a flash-like luminescence that is useful for fast and more sensitive assays. The effect of heavy metals and sanitizing agents was analyzed. Zinc, copper, 1-propanol, and iodide had inhibitory effects on bioluminescence and growth assays; however, in these cases the bioluminescence was not a very reliable indicator of cell growth and metabolic activity because these agents also inhibited the luciferase. On the other hand, mercury and silver strongly affected cell bioluminescence and growth but not the luciferase activity, indicating that bioluminescence was a reliable indicator of cell growth and metabolic activity in this case. Finally, bioluminescent E. coli immobilized in agarose matrix gave a more stable format for environmental assays.  相似文献   

12.
Reporter assays that use luciferase are widely employed for monitoring cellular events associated with gene expression. In general, firefly luciferase and Renilla luciferase are used for monitoring single gene expression. However, the expression of more than one gene cannot be monitored simultaneously by this system because one of the two reporting luciferases must be used as an internal control. We have developed a novel reporter assay system in which three luciferases that emit green, orange, and red light with a single substrate are used as reporter genes. The activities of the luciferases can be measured simultaneously and quantitatively with optical filters. This system enables us to simply and rapidly monitor multiple gene expressions in a one-step reaction.  相似文献   

13.
Precursor messenger RNA (pre-mRNA) splicing is critical for cell growth and development, and errors in RNA splicing frequently cause cellular dysfunction, abnormal gene expression, and a variety of human diseases. However, there is currently a lack of reliable systems to noninvasively monitor the mRNA splicing efficiency in cells and animals. Here, we described the design of a genetically engineered ratiometric dual luciferase reporter to continuously quantify the changes in mRNA splice variants in vivo. This reporter system is encoded within a single polypeptide but on separate exons, thus generating two distinct luciferase signals derived from spliced and unspliced mRNAs. With this reporter, the two kinds of luciferase in the same individual can minimize the influence of indirect factors on splicing, and the ratio of these two luciferase intensities represents the dynamic splicing efficiency of pre-mRNA. Our study offers a convenient and robust tool for the screening and identification of small molecules or trans-acting factors that affect the efficiency of specific splicing reactions.  相似文献   

14.
Bioluminescence imaging (BLI) is emerging as a powerful tool for real-time monitoring of infections in living animals. However, since luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. Strains of Escherichia coli harboring the genes for either the bacterial luciferase from Photorhabdus luminescens or the PpyRE-TS and PpyGR-TS firefly luciferase mutants of Photinus pyralis (red and green thermostable P. pyralis luciferase mutants, respectively) have been engineered and used to monitor intestinal colonization in the streptomycin-treated mouse model. There was excellent correlation between the bioluminescence signal measured in the feces (R2 = 0.98) or transcutaneously in the abdominal region of whole animals (R2 = 0.99) and the CFU counts in the feces of bacteria harboring the luxABCDE operon. Stability in vivo of the bioluminescence signal was achieved by constructing plasmid pAT881(pGB2ΩPamiluxABCDE), which allowed long-term monitoring of intestinal colonization without the need for antibiotic selection for plasmid maintenance. Levels of intestinal colonization by various strains of E. coli could be compared directly by simple recording of the bioluminescence signal in living animals. The difference in spectra of light emission of the PpyRE-TS and PpyGR-TS firefly luciferase mutants and dual bioluminescence detection allowed direct in vitro and in vivo quantification of two bacterial populations by measurement of red and green emitted signals and thus monitoring of the two populations simultaneously. This system offers a simple and direct method to study in vitro and in vivo competition between mutants and the parental strain. BLI is a useful tool to study intestinal colonization.Among the wide variety of bacteria that colonize the gastrointestinal tracts of mammals, Escherichia coli is the most abundant facultative anaerobe of the human intestinal microflora. Aside from being part of the normal flora, E. coli is also a versatile organism capable of causing a variety of intestinal and extraintestinal diseases (18). The mechanisms that allow commensal E. coli to colonize the intestine and survive successfully in this niche remain poorly characterized. Conventional mice display natural resistance to colonization by commensal E. coli, but oral administration of streptomycin, which alters the intestinal microflora, allows colonization of the mouse large intestine by this species (25). The streptomycin-treated mouse model has been used extensively to study the factors of gram-negative bacteria implicated in the intestinal colonization process. However, this model is limited to the viable plate counts of bacteria in the feces and misses some critical information, such as the kinetics of colonization, the fate of the bacterial cells across the digestive tract, and the site of colonization. A better understanding of colonization would be facilitated by direct in vivo follow-up of this process.Bioluminescence imaging (BLI) technology is emerging as a powerful tool for the study of a wide range of biological processes in live animals, including real-time monitoring of infections (16). Bioluminescence systems emit visible light due to the luciferase-mediated oxidation of a luciferin substrate. A variety of luciferin-luciferase systems with different peak emissions have been identified in nature from numerous species (14). The luciferase of the soil bacterium Photorhabdus luminescens has been expressed successfully in gram-negative and gram-positive bacteria. This system emits blue-green light, with an emission maximum of approximately 490 nm, and does not require the addition of an exogenous substrate since the luciferase operon contains the genes required for synthesis of the substrate. Therefore, this luciferase has been used extensively to monitor bacterial infections in the living mouse. One of the first investigations with Salmonella enterica serovar Typhimurium transformed with the lux operon of P. luminescens evaluated the tissue distribution and the virulence of various S. Typhimurium strains (9). Subsequent modification of the lux operon led to the generation of highly bioluminescent Staphylococcus aureus and allowed the monitoring of infections due to this species in living mice (11). The modified lux operon was engineered into a lux-kan transposon cassette for chromosomal integration in gram-positive bacteria, such as S. aureus, Streptococcus pneumoniae, group A Streptococcus, and Listeria monocytogenes (16). Replication of L. monocytogenes in the lumen of the gall bladder was demonstrated for the first time by BLI (13).Bioluminescent E. coli was used in the neutropenic mouse thigh model of infection to evaluate the in vivo activity of antimicrobial agents (29). Bioluminescence was as indicative of therapeutic efficacy as CFU counts but, in addition, allowed real-time monitoring of the infection and of treatment efficacy in the same animal; however, only short-term monitoring (12 h) could be performed.Because luciferases are oxygenases, it has been suggested that the requirement for oxygen may limit the use of BLI in anaerobic environments, such as the lumen of the gut. After oral administration of bioluminescent Salmonella to susceptible mice, the bioluminescent signal recorded in the abdominal region was greatly enhanced after air exposure (9). It was therefore assumed that direct bioluminescence imaging of intestine-colonizing microorganisms would not be optimal unless oxygen was provided exogenously or as the result of the close interaction between cells and the bacteria (9). However, the bacterial luciferase was used to trace in real time the colonization dynamics by Citrobacter rodentium of the gastrointestinal tracts of living animals, demonstrating that the gut represents a semianaerobic environment that allows the study of bacterial colonization by BLI (33).Factors essential for colonization are best studied in cocolonization experiments (7, 17). There are several luciferases with distinct emission spectra (34) that could be used in competition experiments to trace simultaneously two bacterial populations in the same living animal. However, in order not to impose additional and different metabolic burdens on the bacteria under study, the exogenous luciferases ideally have to be similar to allow comparison between strains. The thermostable luciferase variants PpyRE-TS and PpyGR-TS, derived from wild-type luciferase from the North American firefly Photinus pyralis, emit red (612 nm) and green (552 nm) light, respectively, at 37°C and are encoded by single genes of 1,650 bp, differing by only 9 bp (4). Bioluminescence color is determined by the Ser284Thr (PpyRE-TS) and Val241Ile, Gly246Ala, and Phe250Ser (PpyGR-TS) amino acid changes (5, 34). By use of optical filters, the emission spectra are readily distinguishable (4, 5). Five additional mutations provide enhanced thermostability at 37°C (4), improving the compatibility of the enzymes with bacterial culture conditions and BLI in animal models.While the luciferase mutants and all firefly luciferases use as substrates firefly luciferin and ATP to produce light, in vivo imaging is commonly performed with endogenous ATP and requires only exogenous administration of the luciferase substrate.The aim of this study was to develop a dynamic mouse model using in vivo bioluminescence imaging systems to monitor bacterial colonization in situ and in real time in whole living animals. Various strains of E. coli harboring the genes for the bacterial luciferase from P. luminescens or the firefly luciferase mutants (PpyRE-TS and PpyGR-TS) from P. pyralis have been engineered and used to follow bacterial intestinal colonization in mice. BLI was found to be well adapted to compare the intestine-colonizing capacities of various E. coli strains and to monitor cocolonization in vivo by use of dual bioluminescence emission.  相似文献   

15.
16.
目的:建立-种基于分泌型萤光素酶的实时定量检测实验动物体内肿瘤大小的方法。方法:以分泌型Gaussia萤光素酶(Gluc)为报告基因,以嘌呤霉素为筛选基因,将两者用T2A元件连接后克隆到慢病毒载体,包装慢病毒后感染乳腺癌MCF-7细胞,经嘌呤霉素筛选得到稳定转染细胞MCF-7-Gluc,并检测细胞上清中Gluc活性随时问和细胞数目的变化;将MCF-7-Gluc扩大培养后经皮下注射到雌性BALB/c裸鼠前肢腋下,待肿瘤形成后,检测外周血液中Gluc活性与肿瘤体积的相关性。结果:体外实验显示稳定转染细胞MCF-7-Gluc分泌到细胞上清的Gluc活性与时间和细胞数量在-定范围内均呈现良好的线性关系,体内实验显示裸鼠血液中的Gluc活性与肿瘤体积呈正相关。结论:Gluc技术可作为-种灵活、方便、实时定量检测活体动物体内肿瘤大小的有效工具。  相似文献   

17.
Firefly bioluminescence reaction in the presence of Mg2 +, ATP and molecular oxygen is carried out by luciferase. The luciferase structure alterations or modifications of assay conditions determine the bioluminescence color of firefly luciferase. Among different beetle luciferases, Phrixothrix hirtus railroad worm emits either yellow or red bioluminescence color. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional arginine residue at 353 that is absent in other firefly luciferases. It was reported that insertion of Arg in an important flexible loop350–359 showed changes in bioluminescence color from green to red and the optimum temperature activity was also increased. To explain the color tuning mechanism of firefly luciferase, the structure of native and a mutant (E354R/356R/H431Y) of Lampyris turkestanicus luciferase is determined at 2.7 Å and 2.2 Å resolutions, respectively. The comparison of structure of both types of Lampyris turkestanicus luciferases reveals that the conformation of this flexible loop is significantly changed by addition of two Arg in this region. Moreover, its surface accessibility is affected considerably and some ionic bonds are made by addition of two positive charge residues. Furthermore, we noticed that the hydrogen bonding pattern of His431 with the flexible loop is changed by replacing this residue with Tyr at this position. Juxtaposition of a flexible loop (residues 351–359) in firefly luciferase and corresponding ionic and hydrogen bonds are essential for color emission.  相似文献   

18.
Marine luciferases are increasingly used as reporters to study gene regulation. These luciferases have utility in bioluminescent assay development, although little has been reported on their catalytic properties in response to substrate concentration. Here, we report that the two marine luciferases from the copepods, Gaussia princeps (GLuc) and Metridia longa (MLuc) were found, surprisingly, to produce light in a cooperative manner with respect to their luciferin substrate concentration; as the substrate concentration was decreased 10 fold the rate of light production decreased 1000 fold. This positive cooperative effect is likely a result of allostery between the two proposed catalytic domains found in Gaussia and Metridia. In contrast, the marine luciferases from Renilla reniformis (RLuc) and Cypridina noctiluca (CLuc) demonstrate a linear relationship between the concentration of their respective luciferin and the rate of light produced. The consequences of these enzyme responses are discussed.  相似文献   

19.
Gaussia luciferase (Gluc) is a secreted reporter, and its expression in living animals can be assessed by in vivo bioluminescence imaging (BLI) or blood assays. We characterized Gluc as an in vivo reporter in comparison with firefly luciferase (Fluc). Mice were inoculated subcutaneously with tumor cells expressing both Fluc and Gluc and underwent Fluc BLI, Gluc BLI, blood assays of Gluc activity, and caliper measurement. In Gluc BLI, the signal from the tumor peaked immediately and then decreased rapidly. In the longitudinal monitoring, all measures indicated an increase in tumor burden early after cell inoculation. However, the increase reached plateaus in Gluc BLI and Fluc BLI despite a continuous increase in the caliper measurement and Gluc blood assay. Significant correlations were found between the measures, and the correlation between the blood signal and caliper volume was especially high. Gluc allows tumor monitoring in mice and should be applicable to dual-reporter assessment in combination with Fluc. The Gluc blood assay appears to provide a reliable indicator of viable tumor burden, and the combination of a blood assay and in vivo BLI using Gluc should be promising for quantifying and localizing the tumors.  相似文献   

20.
Shinde R  Perkins J  Contag CH 《Biochemistry》2006,45(37):11103-11112
In vivo bioluminescence imaging has become a cornerstone technology for preclinical molecular imaging. This imaging method is based on light-emitting enzymes, luciferases, which require specific substrates for light production. When linked to a specific biological process in an animal model of human biology or disease, the enzyme-substrate interactions become biological indicators that can be studied noninvasively in living animals. Signal intensity in these animal models depends on the availability of the substrate for the reaction within living cells in intact organs. The biodistribution and clearance rates of the substrates are therefore directly related to optimal imaging times and signal intensities and ultimately determine the sensitivity of detection and predictability of the model. Modifications of d-luciferin, the substrate for the luciferases obtained from beetle, including fireflies, result in novel properties and offer opportunities for improved bioassays. For this purpose, we have synthesized a conjugate, glycine-d-aminoluciferin, and investigated its properties relative to those of d-aminoluciferin and d-luciferin. The three substrates exhibited different kinetic properties and different intracellular accumulation profiles due to differences in their molecular structure, which in turn influenced their biodistribution in animals. Glycine-d-aminoluciferin had a longer in vivo circulation time than the other two substrates. The ability to assay luciferase in vitro and in vivo using these substrates, which exhibit different pharmacokinetic and pharmacodynamic properties, will provide flexibility and improve current imaging capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号