首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 167 毫秒
1.
The metabolism of hydrogen peroxide by the scavenging system was studied in Chlamydomonas grown in a selenium-lacking and a selenium-containing medium. In cells of the former, 40% of external hydrogen peroxide (H2O2) was scavenged by ascorbate peroxidase (AsAP; EC 1.11.1.11) and the residual H2O2 by catalase (EC 1.11.1.6). The enzymes involved in the ascorbate-glutathione cycle including AsAP. were localized in the chloroplast. In cells of the latter, glutathione peroxidase (GSHP; EC 1.11.1.9) functioned primarily in the removal of external H2O2. GSHP was located solely in the cytosol. The Chlamydomonas AsAP was relatively stable in ascorbate-depleted medium as compared with chloroplast AsAP of higher plants. No inactivation of the enzyme was found upon its incubation with hydroxyurea, an inhibitor of the chloroplast enzyme of higher plants. The enzyme showed higher specificity with pyrogallol than with ascorbate. The amino acid sequences in the N-terminal region of Chlamvdomonas AsAP showed no significant similarity to any other AsAP from higher plants and Euglena . The enzyme had a molecular mass of 34 kDa. The Km values of the enzyme for ascorbate and H2O2 were 5.2±0.3 and 25±3.4 μ M , respectively. Hydrogen peroxide was generated at a rate of 6.1±0.8 μmol mg-1 chlorophyll h-1 in intact chloroplasts isolated from Chlamydomonas cells grown in the presence of Na-selenite, and it diffused from the organelles into the medium.  相似文献   

2.
Rice ( Oryza sativa L.) cv. Tulsi is recommended for Eastern India, for upland ecological cultivation systems where a crop experiences natural cycles of water deficit and water sufficiency, depending upon the monsoon rains. In this experiment, this cultivar was subjected to three cycles of water stress of increasing stress intensity. Each stress cycle was terminated by rewatering the plants for a 48-h period. The level of stress was measured by quantification of H2O2. The response of antioxidant metabolites such as ascorbate and glutathione, and enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2) and guaiacol peroxidase (POX, EC 1.11.1.7) was analysed in terms of activity and isozyme pattern for each cycle of stress and recovery. The differential response of the antioxidant enzymes with increasing stress intensity followed by recovery, highlight the different role of each in the drought acclimation process of upland rice. SOD and POX activity in stressed plants was higher than the controls in all the three cycles. The second level of stress saw an increase in all the enzymes with APX and GR showing its maximum activity and there was a better management of H2O2 levels. There was an induction of a new CAT isoform in stressed plants in the third cycle of water stress. The co-ordinated defense helped the plants to recover in terms of growth on rewatering after stress cycles.  相似文献   

3.
In Lycopersicon esculentum Mill. (cv. VFN8), mechanical stimulation induced a rapid and transient increase of with hydrogen peroxide (H2O2), a part of an oxidative burst. The reaction was followed by an antioxidative response, with the involvement of phospholipid hydroperoxide glutathione peroxidase (PHGPX)-like protein (EC 1.11.1.9). Induction of expression of two putative PHGPX genes was observed in rubbed internodes. To characterize the importance of this antioxidant gene, enzymatic activities of glutathione peroxidase (GPX) and PHGPX were measured, respectively, H2O2 and hydroperoxide lipid as oxidant. Only PHGPX activities were induced by the mechanical treatment, suggesting a major role of PHGPX in the mechanisms of antioxidant defence in plant.  相似文献   

4.
Wheat ( Triticum aestivum L.) seedlings of a drought-resistant cv. C306 were subjected to severe water deficit directly or through stress cycles of increasing intensity with intermittent recovery periods (drought acclimation). The antioxidant defense in terms of redox metabolites and enzymes in leaf cells, chloroplasts, and mitochondria was examined in relation to ROS-induced membrane damage. Drought-acclimated seedlings modulated growth by maintaining favorable turgor potential and RWC and were able to limit H2O2 accumulation and membrane damage as compared with non-acclimated plants during severe water stress conditions. This was due to systematic upregulation of H2O2-metabolizing enzymes especially ascorbate peroxidase (APX, EC 1.11.1.11) and by maintaining ascorbate–glutathione redox pool in acclimated plants. By contrast, failure in the induction of APX and ascorbate–glutathione cycle enzymes makes the chloroplast susceptible to oxidative stress in non-acclimated plants. Non-acclimated plants protected the leaf mitochondria from oxidative stress by upregulating superoxide dismutase (SOD, EC 1.15.1.1), APX, and glutathione reductase (GR, EC 1.6.4.2) activities. Rewatering led to rapid enhancement in all the antioxidant defense components in non-acclimated plants, which suggested that the excess levels of H2O2 during severe water stress conditions might have inhibited or downregulated the antioxidant enzymes. Hence, drought acclimation conferred enhanced oxidative stress tolerance by well-co-ordinated induction of antioxidant defense both at the chloroplast and at the mitochondrial level.  相似文献   

5.
Generation of O2 and H2O2 as well as the activities of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, dehydroascorbate reductase and ascorbate content were studied in tomato cell cultures in response to fusaric acid – a nonspecific toxin of phytopathogenic Fusarium species. Toxin treatment resulted in decreased cell viability which was preceded by culture medium alkalinization up to 0.65 pH unit and enhanced extracellular O2 production. The H2O2 level was not significantly affected. In toxin-treated cultures, a transient, significant increase occurred in intracellular superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase activities. Fusaric acid-induced ascorbate turnover modulation led to up to a twofold increase in dehydroascorbic acid accumulation, and a decrease in the associated ascorbate redox ratio. It was concomitant with a significant decrease in dehydroascorbate reductase activity. These results support previous observations that the pro- and anti-oxidant systems are involved in response to fusaric acid treatment although differential response of H2O2 and its metabolism-related enzymes between the whole leaf and cell culture assays was found.  相似文献   

6.
The effects of salt stress on antioxidative activities were investigated in a coastal halophyte, Cakile maritima . Two Tunisian accessions, Jerba and Tabarka, were compared. Plants were subjected to 100, 200, or 400 m M NaCl for 20 days. Parameters of oxidative stress [malondialdehyde (MDA), electrolyte leakage (EL), and hydrogen peroxide (H2O2) concentration], activities of several enzymes [superoxide dismutase (SOD), catalase (CAT), peroxydase (POD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR)], and antioxidant molecules (ascorbate, ASC, and glutathione, GSH) were determined. Growth of Jerba plants was improved at 100 m M NaCl as compared to that of control. Tabarka growth was inhibited by salt at all NaCl concentrations. The relative salt tolerance of Jerba was associated with high antioxidant enzyme activities and glutathione content, together with low MDA content, EL, and H2O2 concentration. Lower antioxidant activities and higher MDA content, EL, and H2O2 concentration were found in Tabarka. As a whole, these data suggest that the capacity to limit oxidative damage is important for salt tolerance of C. maritima .  相似文献   

7.
The response of the chloroplastic antioxidant system of the cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species L. pennellii (Lpa) to NaCl stress was studied. An increase in H2O2 level and membrane lipid peroxidation was observed in chloroplasts of salt-stressed Lem. In contrast, a decrease in these indicators of oxidative stress characterized chloroplasts of salt-stressed Lpa plants. This differential response of Lem and Lpa to salinity, correlates with the activities of the antioxidative enzymes in their chloroplasts. Increased activities of total superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione-S-transferase (GST), phospholipid hydroperoxide glutathione peroxidase (PHGPX) and several isoforms of non-specific peroxidases (POD) were found in chloroplasts of salt-treated Lpa plants. In these chloroplasts, in contrast, activity of lipoxygenase (LOX) decreased while in those of salt-stressed Lem it increased. Although total SOD activity slightly increased in chloroplasts of salt-treated Lem plants, differentiation between SOD types revealed that only stromal Cu/ZnSOD activity increased. In contrast, in chloroplasts of salt-treated Lpa plants FeSOD activity increased while Cu/ZnSOD activity remained unchanged. These data indicate that salt-dependent oxidative stress and damage, suffered by Lem chloroplasts, was effectively alleviated in Lpa chloroplasts by the selective up-regulation of a set of antioxidative enzymes. Further support for the above idea was supplied by leaf discs experiments in which pre-exposure of Lpa plants to salt-treatment conferred cross-tolerance to paraquat-induced oxidative stress while increased oxidative damage by paraquat-treatment was found in salt-stressed Lem plants.  相似文献   

8.
Diazotrophic systems have developed a number of strategies to protect nitrogenase (N2ase; EC 1.18.6.1) from O2 excess and active-oxygen species (AOS). Protection against O2 excess is given by biochemical modifications of N2ase, increased rates of low-efficiency respiration, temporal segregation of N2 fixation and photosynthesis, physical barriers to O2 diffusion, and hemoglobins. On the other hand, AOS may originate from oxidation of N2ase components, ferredoxins, flavodoxins and hemoglobins; interaction among the AOS themselves, or between H2O2 and hemoglobins; and during reactions catalyzed by hydrogenase (EC 1.18.99.1), xanthine oxidase (EC 1.1.3.22) and uricase (EC 1.7.3.3). Active-oxygen species are scavenged enzymatically [superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6). peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11)] or through non-enzymic reaction with low-molecular-weight compounds (ascorbate, α-tocopherol, glutathione).  相似文献   

9.
Leaves of 7- and 18-day-old plants of two maize strains, one resistant (LIZA) and one sensitive (LG11) to water stress, were floated in 1 m M paraquat and 1 m M H2O2 for 12 h in light and in darkness. The aim of this work was to analyse the effects of these substances on the activities of enzymes involved in the scavenging of active oxygen species during senescence. Three senescence parameters; chlorophyll loss, lipid peroxidation and conductivity; showed a general cell damage caused by both oxidative treatments and revealed a higher tolerance of LIZA than LG11 to paraquat and H2O2 both in light and in darkness. Activities of antioxidative enzymes increased by the effect of oxidative treatments in young and senescent leaves of the drought-resistant maize strain LIZA. These increases were about 3-to 6-fold in glutathione reductase. 3-to 4-fold in superoxide dismutase and 2-fold in ascorbate peroxidase activities. The possible correlation between water stress resistance. senescence and the potential of antioxidant enzymes was analysed.  相似文献   

10.
After being immersed in water, oxalic acid (OA) or salicylic acid (SA) aqueous solutions, mango ( Mangifera indica L. cv. Zill) fruit were stored at 14°C or at 5°C with shelf life to determine the effects of exogenous OA or SA on reactive oxygen metabolism, quality and chilling injury (CI) of the fruit. Mango CI could be reduced by OA and SA treatments. Compared with that in control, accompanied with alleviated CI at shelf life, fruit treated with OA or SA had significantly higher reduction states of ascorbate and glutathione. Moreover, the treated fruit showed lower superoxide anion content, higher hydrogen peroxide content, lower lipoxygenase (EC 1.13.11.12) activity and higher activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), guaiacol peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2). In addition, fruit firmness, total soluble solids and titratable acidity content were not obviously affected by OA and SA treatments. It was suggested that the effect of OA or SA on mango CI probably attributed to more reducing status of ascorbate and glutathione, less O2 accumulation and more H2O2 accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号