首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
用AFLP的方法分析中国白桦×欧洲白桦的78个F1个体,并按照拟测交作图策略,建立了中国白桦和欧洲白桦遗传连锁图谱。从群体的45对引物组合中分离出343个分离位点,χ^2检验表明,其中有311个符合1:1拟测交分离位点。在这些位点中168个来自中国白桦,143个来自欧洲白桦。软件分析表日月,中国白桦的168个位点构成9个连锁群,11个三联体和14个连锁对,55个为非连锁位点,连锁标记覆盖的总距离为1909.2cM,平均图距为16.9cM;来自欧洲白桦的143个位点构成12个连锁群,4个三联体和9个连锁对,21个为非连锁位点,连锁标记覆盖的总距离为1857.3cM,平均图距为15.2cM。  相似文献   

2.
白桦AFLP遗传连锁图谱的构建   总被引:4,自引:0,他引:4  
高福玲  姜廷波 《遗传》2009,31(2):213-218
以80个中国白桦(Betula platyphylla Suk)×欧洲白桦(Betula pendula Roth)的F1个体为作图群体, 利用扩增片段长度多态性(Amplified fragment length polymorphism, AFLP)标记, 按照拟测交作图策略, 分别构建了中国白桦和欧洲白桦的分子标记遗传连锁图谱。从64对AFLP引物组合中筛选出34对多态性丰富的引物组合, 这些入选的引物组合在分离群体中共检测到451个多态性位点。χ2检验结果表明, 有362个位点符合1∶1分离(拟测交分离位点), 41个位点符合3∶1分离, 20个位点符合1∶3分离, 28个位点属偏分离位点。在符合拟测交分离的位点中, 201个位点来自中国白桦, 161个位点来自欧洲白桦。利用2点连锁分析, 来自中国白桦的201个标记构成了14个连锁群(4个以上标记), 10个三连体和14个连锁对, 45个为非连锁位点, 连锁标记覆盖的总图距为1 296.1 cM, 平均图距15.5 cM。而来自欧洲白桦的161个标记构成了17个不同的连锁群(4个以上标记), 8个三连体和4个连锁对, 15个为非连锁位点, 连锁标记覆盖的总图距为1 035.8 cM, 平均图距12 cM。  相似文献   

3.
利用RAPD标记构建响叶杨和银白杨分子标记连锁图谱   总被引:22,自引:0,他引:22  
利用RAPD标记响叶杨( Populus adenopoda Maxim .) ×银白杨( P. alba L.) 的F1 群体,按照拟测交的作图策略,分别构建了响叶杨和银白杨的分子标记连锁图谱。实验过程中对600 个随机的寡核苷酸引物进行了重复筛选,共选出128 个引物用于作图群体的随机扩增,选择符合1∶1 分离的拟测交位点。作图群体大小为82 个单株( 包括双亲) 。结果获得了326 个拟测交分离位点和7 个3∶1 分离位点。拟测交位点中有238 个位点来源于银白杨,有88个位点来源于响叶杨。经偏分离检测,用于银白杨作图的位点共计212 个(26 个位点偏分离) ,用于响叶杨作图的位点共计78 个(10 个位点偏分离) 。利用多点连锁分析,银白杨中有189 个连锁标记构成了20 个不同的连锁群(4个以上标记),6 个三连体和16 个连锁对,连锁标记覆盖的总图距为2402 .4 cM(centimorgan) 。而响叶杨有41 个连锁标记分属于12 个不同的连锁群(2 个以上标记) ,标记覆盖的总图距为479 .4 cM。获得了中等密度的银白杨连锁图谱和响叶杨图谱的一个连锁框架  相似文献   

4.
白桦RAPD遗传连锁图谱的构建   总被引:4,自引:1,他引:3  
以80个来自欧洲白桦(Betula pendula Roth)×中国白桦(Betula platyphylla Suk)的F1个体为作图群体。利用2个亲本和10个F1个体对1,200个10 bp的随机寡核苷酸引物进行筛选, 确定了208个多态性引物。利用RAPD标记, 按照拟测交的作图策略, 分别构建了欧洲白桦和中国白桦的分子标记连锁图谱。对2个亲本和80个F1代作图群体进行随机扩增, 共获得了364个多态性位点。χ2检验结果表明有307个位点符合1∶1分离的拟测交分离, 26个位点符合3∶1分离, 31个位点属偏分离位点。拟测交位点中有145个位点来自欧洲白桦, 有162个位点来自中国白桦。利用2点连锁分析, 欧洲白桦中的145个连锁标记构成了14个不同的连锁群(4个以上标记), 6个三连体和6个连锁对, 37个为非连锁位点, 连锁标记覆盖的总图距为955.6 cM (centimorgan), 平均图距14.9 cM。而来自中国白桦的162个标记构成了15个连锁群(4个以上标记), 4个三连体和6个连锁对, 21个为非连锁位点, 连锁标记覆盖的总图距为1,545.8 cM (centimorgan), 平均图距15.2 cM。该图谱的建立为进一步将两个图谱整合为一个高密度图谱及重要基因的定位奠定了基础。  相似文献   

5.
利用RAPD和SSR分子标记结合拟测交策略,对中国对虾(Fenneropenaeus chinensis)“黄海1号”雌虾与野生雄虾作为亲本进行单对杂交产生的F1代,采用RAPD和SSR 两种分子标记技术初步构建了中国对虾雌、雄遗传连锁图谱。对460个RAPD引物和44对SSR引物进行筛选,共选出61个RAPD引物和20对SSR引物,用于对父母本和82个F1个体进行遗传分析。共得到母本分离标记146个(RAPD标记128个,微卫星标记18个)和父本分离标记127个(RAPD标记109个,微卫星标记18个)。雌性图谱包括8个连锁群、9个三联体和14个连锁对,标记间平均间隔为11.28 cM,图谱共覆盖1 173 cM,覆盖率为59.36%;雄性图谱包括10个连锁群、12个三联体和7个连锁对,标记间平均间隔为12.05 cM,图谱共覆盖1 144.6 cM,覆盖率为62.01%。中国对虾遗传图谱的构建为其分子标记辅助育种、比较基因组作图及数量性状位点的定位与克隆奠定了基础。  相似文献   

6.
RAPD和SSR两种标记构建的中国对虾遗传连锁图谱   总被引:10,自引:0,他引:10  
利用RAPD和SSR分子标记结合拟测交策略,对中国对虾(Fenneropenaeuschinensis)“黄海1号”雌虾与野生雄虾作为亲本进行单对杂交产生的F1代,采用RAPD和SSR两种分子标记技术初步构建了中国对虾雌、雄遗传连锁图谱。对460个RAPD引物和44对SSR引物进行筛选,共选出61个RAPD引物和20对SSR引物,用于对父母本和82个F1个体进行遗传分析。共得到母本分离标记146个(RAPD标记128个,微卫星标记18个)和父本分离标记127个(RAPD标记109个,微卫星标记18个)。雌性图谱包括8个连锁群、9个三联体和14个连锁对,标记间平均间隔为11·28cM,图谱共覆盖1173cM,覆盖率为59·36%;雄性图谱包括10个连锁群、12个三联体和7个连锁对,标记间平均间隔为12·05cM,图谱共覆盖1144·6cM,覆盖率为62·01%。中国对虾遗传图谱的构建为其分子标记辅助育种、比较基因组作图及数量性状位点的定位与克隆奠定了基础。  相似文献   

7.
中国明对虾AFLP分子标记遗传连锁图谱的构建   总被引:26,自引:0,他引:26  
以中国明对虾抗WSSV(白斑综合症病毒,WhiteSpotSyndromeVirus)选育群体第四代为母本,野生中国明对虾为父本,采用单对杂交方式产生F1代,F1代个体姊妹交产生F2代共42个个体为做图群体。62对AFLP选择性引物组合共产生529个分离位点,符合1∶1孟德尔分离类型位点共253个,3∶1孟德尔分离类型位点共276个。利用拟测交理论分别构建中国明对虾雌虾、雄虾的遗传连锁图谱,利用F2自交模型构建共同的AFLP分子标记连锁图谱。三张连锁图上分别有31、25和44个连锁群,图谱分辨率为分别为2.4cM、2.4cM和2.1cM。标记间隔距离分别为12.20cM、11.45cM和11.12cM图谱覆盖率分别达到50.21%、51.93%和48.08%。能够基本满足进行QTL(数量性状位点,QuantitativeTraitLocus)定位的需要。将该图谱和其他对虾类遗传连锁图谱进行了比较分析,探讨了利用相关分子标记将已有图谱进行整合的可能。  相似文献   

8.
甘蓝型黄籽油菜种皮色泽QTL作图   总被引:8,自引:0,他引:8  
甘蓝型黄籽油菜具有低纤维、高蛋白及高含油量的优点,因而己成为广大油菜育种工作者研究的重点之一。利用甘蓝型黑籽品系油研2号作父本,计蓝型黄籽品系GH06为母本,获得132个单株的F2群体;以AFLP和SSR为主要分析方法,构建了包括164个标记的甘蓝型油菜遗传连锁图谱,其中包括125个AFLP标记、37个SSR标记及一个RAPD和一个SCAR标记,分布在19个连锁群上,覆盖油菜基因组2549.8cM,标记间平均距离15.55cM。利用多区间作图法,对种皮色泽QTL进行分析,在第5及第19连锁群上各检测到一个QTL位点,分别解释表型变异46%及30.9%。  相似文献   

9.
利用RAPD标记构建美洲黑杨×欧美分子标记连锁图谱   总被引:3,自引:0,他引:3  
本文利用RAPD标记和美洲黑杨(Populus deltoides)×欧美杨(P.euramericana)的F1群体,构建了美洲黑杨×欧美杨的分子标记连锁图谱.实验过程中对1040个寡核苷酸随机引物进行了重复筛选,共选出127个引物用于作图群体(包括双亲共92个无性系)的随机扩增,这127个引物产生229个多态基因座,其中符合"拟测交"1∶1分离的有214个.利用多点连锁分析,形成19个连锁群及6个三连体和14个连锁对.由19个连锁群构成的图谱含标记129个,总图距为1914 2cM,覆盖杨树基因组约73 62%.标记间的平均间距为14 84cM.本研究获得了中等密度的美洲黑杨×欧美杨的一个连锁框架.  相似文献   

10.
利用RAPD标记构建美洲黑杨×欧美杨分子标记连锁图谱   总被引:5,自引:0,他引:5  
本文利用RAPD标记和美洲黑杨(Populusdeltoides)×欧美杨(P.euramericana)的F1 群体 ,构建了美洲黑杨×欧美杨的分子标记连锁图谱。实验过程中对1040个寡核苷酸随机引物进行了重复筛选 ,共选出127个引物用于作图群体(包括双亲共92个无性系)的随机扩增 ,这127个引物产生229个多态基因座 ,其中符合“拟测交”1∶1分离的有214个。利用多点连锁分析 ,形成19个连锁群及6个三连体和14个连锁对。由19个连锁群构成的图谱含标记129个 ,总图距为1914 2cM ,覆盖杨树基因组约73 62 %。标记间的平均间距为14 84cM。本研究获得了中等密度的美洲黑杨×欧美杨的一个连锁框架。  相似文献   

11.
A genetic linkage map of the tetraploid white yam (Dioscorea rotundata Poir.) was constructed based on 341 co-dominantly scored amplified fragment length polymorphism (AFLP) markers segregating in an intraspecific F1 cross. The F1 mapping population was produced by crossing a landrace cultivar TDr 93-1 as female parent to a breeding line TDr 87/00211 as the male parent. The marker segregation data were split into maternal and paternal data sets, and separate genetic linkage maps were constructed since the mapping population was an F1 cross between two presumed heterozygous parents. The markers segregated like a diploid cross-pollinator population suggesting that the D. rotundata genome is an allo-tetraploid (2n = 4x = 40). The maternal map comprised 155 markers mapped on 12 linkage groups with a total map length of 891 cM. Three linkage groups consisted of maternal parent markers only. The paternal map consisted of 157 markers mapped on 13 linkage groups with a total map length of 852 cM. Three and one quantitative trait loci (QTLs) with effects on resistance to Yam Mosaic Virus (YMV) were identified on the maternal and paternal linkage maps, respectively. Prospects for detecting more QTLs and using marker-assisted selection in white yam breeding appear good, but this is subject to the identification of additional molecular markers to cover more of the genome.  相似文献   

12.
Linkage analyses increasingly complement cytological and traditional plant breeding techniques by providing valuable information regarding genome organization and transmission genetics of complex polyploid species. This study reports a genome map of buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.). Maternal and paternal maps were constructed with restriction fragment length polymorphisms (RFLPs) segregating in 87 F1 progeny from an intraspecific cross between two heterozygous genotypes. A survey of 862 heterologous cDNAs and gDNAs from across the Poaceae, as well as 443 buffelgrass cDNAs, yielded 100 and 360 polymorphic probes, respectively. The maternal map included 322 RFLPs, 47 linkage groups, and 3464 cM, whereas the paternal map contained 245 RFLPs, 42 linkage groups, and 2757 cM. Approximately 70 to 80% of the buffelgrass genome was covered, and the average marker spacing was 10.8 and 11.3 cM on the respective maps. Preferential pairing was indicated between many linkage groups, which supports cytological reports that buffelgrass is a segmental allotetraploid. More preferential pairing (disomy) was found in the maternal than paternal parent across linkage groups (55 vs. 38%) and loci (48 vs. 15%). Comparison of interval lengths in 15 allelic bridges indicated significantly less meiotic recombination in paternal gametes. Allelic interactions were detected in four regions of the maternal map and were absent in the paternal map.  相似文献   

13.
With a "two-way pseudo-testcross" mapping strategy, we applied the amplified fragment length polymorphism (AFLP) markers to construct two moderate density genetic linkage maps for Laminaria. The linkage maps were generated from the 60 progenies of the F1 cross family (Laminaria iongissima Aresch. × L. Japonica Miyabe) with twenty pairs of primer combinations. Of the 333 polymorphic loci scored in 60 progenies, 173 segregated in a 1:1 ratio, corresponding to DNA polymorphisms heterozygous in a single parent, and the other 58 loci existing in both parents followed a 3:1 Mendelian segregation ratio. Among the loci with 1:1 segregating ratios, 79 loci were ordered in 14 linkage groups (648.6 cM) of the paternal map, and 72 loci were ordered in 14 linkage groups (601.9 cM) of the maternal map. The average density of loci was approximately 1 per 8 cM. To Investigate the homologies between two parental maps, we used 58 loci segregated 3:1 for further analysis, and deduced one homologous linkage group. The linkage data developed in these maps will be useful for detecting loci-controlling commercially important traits for Laminaria.  相似文献   

14.
Combined RAPD and RFLP molecular linkage map of asparagus.   总被引:5,自引:0,他引:5  
C Jiang  M E Lewis  K C Sink 《Génome》1997,40(1):69-76
Two linkage maps of asparagus (Asparagus officinalis L.) were constructed using a double pseudotestcross mapping strategy with restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNAs (RAPDs), and allozymes as markers in a population generated from crossing MW25 x A19, two heterozygous parents. All data were inverted and combined with the natural data to detect linkages in repulsion phase. Two sets of data, one for each parent, were formed according to the inheritance patterns of the markers. The maternal MW25 map has a total of 163 marker loci placed in 13 linkage groups covering 1281 cM, with an average and a maximum distance between adjacent loci of 7.9 and 29 cM, respectively. The paternal A19 map has 183 marker loci covering 1324 cM in 9 linkage groups, with an average and a maximum distance between two adjacent loci of 7.7 and 29 cM, respectively. Six multiallelic RFLPs segregating in the pattern a/c x b/c and eight heterozygous loci (four RAPDs, and four RFLPs segregating in the pattern a/b x a/b (HZ loci)) were common to both maps. These 14 loci were used as bridges to align homologous groups between the two maps. In this case, RFLPs were more frequent and informative than RAPDs. Nine linkage groups in the MW25 map were homologous to six groups in the A19 map. In two cases, two or more bridge loci were common to a group; thus, the orientation of homologous linkage groups was also determined. In four other cases, only one locus was common to the two homologous groups and the orientation was unknown. Mdh, four RFLPs, and 14 RAPDs were assigned to chromosome L5, which also has the sex locus M.  相似文献   

15.
A linkage map for European hazelnut (Corylus avellana L.) was constructed using random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers and the 2-way pseudotestcross approach. A full-sib population of 144 seedlings from the cross OSU 252.146 x OSU 414.062 was used. RAPD markers in testcross configuration, segregating 1:1, were used to construct separate maps for each parent. Fifty additional RAPD loci were assigned to linkage groups as accessory markers whose exact location could not be determined. Markers in intercross configuration, segregating 3:1, were used to pair groups in one parent with their homologues in the other. Eleven groups were identified for each parent, corresponding to the haploid chromosome number of hazelnut (n = x = 11). Thirty of the 31 SSR loci were able to be assigned to a linkage group. The maternal map included 249 RAPD and 20 SSR markers and spanned a distance of 661 cM. The paternal map included 271 RAPD and 28 SSR markers and spanned a distance of 812 cM. The maps are quite dense, with an average of 2.6 cM between adjacent markers. The S-locus, which controls pollen-stigma incompatibility, was placed on chromosome 5S where 6 markers linked within a distance of 10 cM were identified. A locus for resistance to eastern filbert blight, caused by Anisogramma anomala, was placed on chromosome 6R for which two additional markers tightly linked to the dominant allele were identified and sequenced. These maps will serve as a starting point for future studies of the hazelnut genome, including map-based cloning of important genes. The inclusion of SSR loci on the map will make it useful in other populations.  相似文献   

16.
A genetic linkage map of an intraspecific cross between 2 Silene vulgaris s.l. ecotypes is presented. Three-hundred AFLP markers from 2 different restriction enzyme combinations were used to genotype an F2 mapping population. Maternal and paternal pure-coupling phase maps with 114 and 186 markers on 12 and 13 linkage groups, respectively, were constructed. Total map length of the paternal and maternal maps are 547 and 446 Kosambi cM, respectively. Nearly half of the markers (49%) exhibited significant transmission ratio distortion. Genome coverage and potential causes of the observed segregation ratio distortions are discussed. The maps represent a first step towards the identification of quantitative trait loci associated with habitat adaptation in the non-model species Silene vulgaris.  相似文献   

17.
In accordance with pseudo-testcross strategy, the first genetic linkage map of Eucommia ulmoides Oliv. was constructed by an F1 population of 122 plants using amplified fragment length polymorphism (AFLP) markers. A total of 22 AFLP primer combinations generated 363 polymorphic markers. We selected 289 markers segregating as 1:1 and used them for constructing the parent-specific linkage maps. Among the candidate markers, 127 markers were placed on the maternal map LF and 108 markers on the paternal map Q1. The maternal map LF spanned 1116.1 cM in 14 linkage groups with a mean map distance of 8.78 cM; the paternal map Q1 spanned 929.6 cM in 12 linkage groups with an average spacing of 8.61 cM. The estimated coverage of the genome through two methods was 78.5 and 73.9% for LF, and 76.8 and 71.2% for Q1, respectively. This map is the first linkage map of E. ulmoides and provides a basis for mapping quantitative-trait loci and breeding applications.  相似文献   

18.
19.
Genetic linkage maps for two apricot cultivars have been constructed using AFLP, RAPD, RFLP and SSR markers in 81 F1 individuals from the cross 'Goldrich' x 'Valenciano'. This family segregated for resistance to 'plum pox virus' (PPV), the most-important virus affecting Prunus species. Of the 160 RAPD arbitrary primers screened a total of 44 were selected. Sixty one polymorphic RAPD markers were scored on the mapping population: 30 heterozygous in 'Goldrich', 19 heterozygous in 'Valenciano', segregating 1:1, and 12 markers heterozygous in both parents, segregating 3:1. A total of 33 and 19 RAPD markers were mapped on the 'Goldrich' and 'Valenciano' maps respectively. Forteen primer combinations were used for AFLPs and all of them detected polymorphism. Ninety five markers segregating 1:1 were identified, of which 62 were heterozygous in the female parent 'Goldrich' and 33 in the male parent 'Valenciano'. Forty five markers were present in both parents and segregated 3:1. A total of 82 and 48 AFLP markers were mapped on the 'Goldrich' and 'Valenciano' maps. Twelve RFLPs probes were screened in the population, resulting in five loci segregating in the family, one locus heterozygous for 'Valenciano' and four heterozygous for both, segregating 1:2:1. Of the 45 SSRs screened 17 segregated in the mapping family, resulting in seven loci heterozygous for the maternal parent and ten heterozygous for both, segregating 1:2:1 or 1:1:1:1. A total of 16 and 13 co-dominant markers were mapped in the female and male parent maps respectively. A total of 132 markers were placed into eight linkage groups on the 'Goldrich' map, defining 511 cM of the total map-length. The average distance between adjacent markers was 3.9 cM. A total of 80 markers were placed into seven linkage groups on the 'Valenciano' map, defining 467.2 cM of the total map-distance, with an average interval of 5.8 cM between adjacent markers. Thirty six marker loci heterozygous in both parents revealed straightforward homologies between five linkage groups in both maps. The sharka resistance trait mapped on linkage group 2. The region containing sharka resistance is flanked by two co-dominant markers that will be used for targeted SSR development employing a recently constructed complete apricot BAC library. SSRs tightly linked to sharka resistance will facilitate MAS in breeding for resistance in apricot.  相似文献   

20.
Based on a two-way pseudo-testcross strategy, high density and complete coverage linkage maps were constructed for the maternal and paternal parents of an intraspecific F2 pedigree of Populus deltoides. A total of 1,107 testcross markers were obtained, and the mapping population consisted of 376 progeny. Among these markers, 597 were from the mother, and were assigned into 19 linkage groups, spanning a total genetic distance of 1,940.3 cM. The remaining 519 markers were from the father, and were also were mapped into 19 linkage groups, covering 2,496.3 cM. The genome coverage of both maps was estimated as greater than 99.9% at 20 cM per marker, and the numbers of linkage groups of both maps were in accordance with the 19 haploid chromosomes in Populus. Marker segregation distortion was observed in large contiguous blocks on some of the linkage groups. Subsequently, we mapped the segregation distortion loci in this mapping pedigree. Altogether, eight segregation distortion loci with significant logarithm of odds supports were detected. Segregation distortion indicated the uneven transmission of the alternate alleles from the mapping parents. The corresponding genome regions might contain deleterious genes or be associated with hybridization incompatibility. In addition to the detection of segregation distortion loci, the established genetic maps will serve as a basic resource for mapping genetic loci controlling traits of interest in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号