首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient receptor potential (TRP) ion channels of peripheral sensory pathways are important mediators of pain, itch, and neurogenic inflammation. They are expressed by primary sensory neurons and by glial cells in the central nervous system, but their expression and function in satellite glial cells (SGCs) of sensory ganglia have not been explored. SGCs tightly ensheath neurons of sensory ganglia and can regulate neuronal excitability in pain and inflammatory states. Using a modified dissociation protocol, we isolated neurons with attached SGCs from dorsal root ganglia of mice. SGCs, which were identified by expression of immunoreactive Kir4.1 and glutamine synthetase, were closely associated with neurons, identified using the pan-neuronal marker NeuN. A subpopulation of SGCs expressed immunoreactive TRP vanilloid 4 (TRPV4) and responded to the TRPV4-selective agonist GSK1016790A by an influx of Ca2+ ions. SGCs did not express functional TRPV1, TRPV3, or TRP ankyrin 1 channels. Responses to GSK1016790A were abolished by the TRPV4 antagonist HC067047 and were absent in SGCs from Trpv4−/− mice. The P2Y1-selective agonist 2-methylthio-ADP increased [Ca2+]i in SGCs, and responses were prevented by the P2Y1-selective antagonist MRS2500. P2Y1 receptor-mediated responses were enhanced in TRPV4-expressing SGCs and HEK293 cells, suggesting that P2Y1 couples to and activates TRPV4. PKC inhibitors prevented P2Y1 receptor activation of TRPV4. Our results provide the first evidence for expression of TRPV4 in SGCs and demonstrate that TRPV4 is a purinergic receptor-operated channel in SGCs of sensory ganglia.  相似文献   

2.
Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvβ1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvβ1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvβ1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvβ1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvβ1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner.  相似文献   

3.
A new convenient method for preparation of 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives 5bg and coumarin containing hydrazide-hydrazone analogues 4ae was presented. The antimycobacterial activity against reference strain Mycobacterium tuberculosis H37Rv and cytotoxicity against the human embryonic kidney cell line HEK-293 were tested in vitro. All compounds demonstrated significant minimum inhibitory concentrations (MIC) ranging 0.28–1.69 μM, which were comparable to those of isoniazid. The cytotoxicity (IC50 > 200 µM) to the “normal cell” model HEK-293T exhibited by 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives 5be, was noticeably milder compared to that of their hydrazone analogues 4ae (IC50 33–403 µM). Molecular docking studies on compounds 4ae and 5bg were also carried out to investigate their binding to the 2-trans-enoyl-ACP reductase (InhA) enzyme involved in M. tuberculosis cell wall biogenesis. The binding model suggested one or more hydrogen bonding and/or arene-H or arene-arene interactions between hydrazones or pyrazole-fused coumarin derivatives and InhA enzyme for all synthesized compounds.  相似文献   

4.
The balance of glycosylation and deglycosylation of ion channels can markedly influence their function and regulation. However, the functional importance of glycosylation of the TRPV1 receptor, a key sensor of pain-sensing nerves, is not well understood, and whether TRPV1 is glycosylated in neurons is unclear. We report that TRPV1 is N-glycosylated and that N-glycosylation is a major determinant of capsaicin-evoked desensitization and ionic permeability. Both N-glycosylated and unglycosylated TRPV1 was detected in extracts of peripheral sensory nerves by Western blotting. TRPV1 expressed in HEK-293 cells exhibited various degrees of glycosylation. A mutant of asparagine 604 (N604T) was not glycosylated but did not alter plasma membrane expression of TRPV1. Capsaicin-evoked increases in intracellular calcium ([Ca(2+)](i)) were sustained in wild-type TRPV1 HEK-293 cells but were rapidly desensitized in N604T TRPV1 cells. There was marked cell-to-cell variability in capsaicin responses and desensitization between individual cells expressing wild-type TRPV1 but highly uniform responses in cells expressing N604T TRPV1, consistent with variable levels of glycosylation of the wild-type channel. These differences were also apparent when wild-type or N604T TRPV1-GFP fusion proteins were expressed in neurons from trpv1(-/-) mice. Capsaicin evoked a marked, concentration-dependent increase in uptake of the large cationic dye YO-PRO-1 in cells expressing wild-type TRPV1, indicative of loss of ion selectivity, that was completely absent in cells expressing N604T TRPV1. Thus, TRPV1 is variably N-glycosylated and glycosylation is a key determinant of capsaicin regulation of TRPV1 desensitization and permeability. Our findings suggest that physiological or pathological alterations in TRPV1 glycosylation would affect TRPV1 function and pain transmission.  相似文献   

5.
Oxidation products of the naturally occurring phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), which are known as OxPAPC, accumulate in atherosclerotic lesions and at other sites of inflammation in conditions such as septic inflammation and acute lung injury to exert pro- or anti-inflammatory effects. It is currently unknown whether OxPAPC also contributes to inflammatory pain and peripheral neuronal excitability in these conditions. Here, we observed that OxPAPC dose-dependently and selectively activated human TRPA1 nociceptive ion channels expressed in HEK293 cells in vitro, without any effect on other TRP channels, including TRPV1, TRPV4 and TRPM8. OxPAPC agonist activity was dependent on essential cysteine and lysine residues within the N-terminus of the TRPA1 channel protein. OxPAPC activated calcium influx into a subset of mouse sensory neurons which were also sensitive to the TRPA1 agonist mustard oil. Neuronal OxPAPC responses were largely abolished in neurons isolated from TRPA1-deficient mice. Intraplantar injection of OxPAPC into the mouse hind paw induced acute pain and persistent mechanical hyperalgesia and this effect was attenuated by the TRPA1 inhibitor, HC-030031. More importantly, we found levels of OxPAPC to be significantly increased in inflamed tissue in a mouse model of chronic inflammatory pain, identified by the binding of an OxPAPC-specific antibody. These findings suggest that TRPA1 is a molecular target for OxPAPC and OxPAPC may contribute to chronic inflammatory pain through TRPA1 activation. Targeting against OxPAPC and TRPA1 signaling pathway may be promising in inflammatory pain treatment.  相似文献   

6.
Proteases that cleave protease-activated receptor-2 (PAR2) at Arg36↓Ser37 reveal a tethered ligand that binds to the cleaved receptor. PAR2 activates transient receptor potential (TRP) channels of nociceptive neurons to induce neurogenic inflammation and pain. Although proteases that cleave PAR2 at non-canonical sites can trigger distinct signaling cascades, the functional importance of the PAR2-biased agonism is uncertain. We investigated whether neutrophil elastase, a biased agonist of PAR2, causes inflammation and pain by activating PAR2 and TRP vanilloid 4 (TRPV4). Elastase cleaved human PAR2 at Ala66↓Ser67 and Ser67↓Val68. Elastase stimulated PAR2-dependent cAMP accumulation and ERK1/2 activation, but not Ca2+ mobilization, in KNRK cells. Elastase induced PAR2 coupling to Gαs but not Gαq in HEK293 cells. Although elastase did not promote recruitment of G protein-coupled receptor kinase-2 (GRK2) or β-arrestin to PAR2, consistent with its inability to promote receptor endocytosis, elastase did stimulate GRK6 recruitment. Elastase caused PAR2-dependent sensitization of TRPV4 currents in Xenopus laevis oocytes by adenylyl cyclase- and protein kinase A (PKA)-dependent mechanisms. Elastase stimulated PAR2-dependent cAMP formation and ERK1/2 phosphorylation, and a PAR2- and TRPV4-mediated influx of extracellular Ca2+ in mouse nociceptors. Adenylyl cyclase and PKA-mediated elastase-induced activation of TRPV4 and hyperexcitability of nociceptors. Intraplantar injection of elastase to mice caused edema and mechanical hyperalgesia by PAR2- and TRPV4-mediated mechanisms. Thus, the elastase-biased agonism of PAR2 causes Gαs-dependent activation of adenylyl cyclase and PKA, which activates TRPV4 and sensitizes nociceptors to cause inflammation and pain. Our results identify a novel mechanism of elastase-induced activation of TRPV4 and expand the role of PAR2 as a mediator of protease-driven inflammation and pain.  相似文献   

7.
TRPV1 (transient receptor potential vanilloid 1) proteins are heat-activated nonselective cation channels. TRPV1 channels are polymodal in their function and exhibit multifaceted regulation with various molecular compounds. In this regard, phosphoinositides, particularly phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate, are important channel regulators. However, their effects on TRPV1 channel activity have not been conclusively determined. To characterize temperature-induced activation of TRPV1 in the presence of different phospholipids, we purified the TRPV1 protein from HEK-293 cells and incorporated it into planar lipid bilayers. In the presence of 2.5 μm phosphatidylinositol 4,5-bisphosphate, TRPV1 channels demonstrated rapid activation at 33–39 °C and achieved full channel opening at 42 °C. At this temperature range, TRPV1 heat activation exhibited steep temperature dependence (temperature coefficient (Q10) of 18), and the channel openings were accompanied by large changes in entropy and enthalpy, suggesting a substantial conformation change. At a similar temperature range, another phosphoinositide, phosphatidylinositol 4-phosphate, also potentiated heat activation of TRPV1, but with much lower efficiency. Negatively charged phosphatidylglycerol could also induce heat activation of TRPV1 channels, although with a small-conductance state. Our data demonstrate that phospholipids, specifically phosphoinositides, are important regulators of TRPV1 and are required for heat-induced channel activity.  相似文献   

8.
NALCN is an intriguing, orphan ion channel among the 4x6TM family of related voltage-gated cation channels, sharing a common architecture of four homologous domains consisting of six transmembrane helices, separated by three cytoplasmic linkers and delimited by N and C-terminal ends. NALCN is one of the shortest 4x6TM family members, lacking much of the variation that provides the diverse palate of gating features, and tissue specific adaptations of sodium and calcium channels. NALCN’s most distinctive feature is that that it possesses a highly adaptable pore with a calcium-like EEEE selectivity filter in radially symmetrical animals and a more sodium-like EEKE or EKEE selectivity filter in bilaterally symmetrical animals including vertebrates. Two lineages of animals evolved alternative calcium-like EEEE and sodium-like EEKE / EKEE pores, spliced to regulate NALCN functions in differing cellular environments, such as muscle (heart and skeletal) and secretory tissue (brain and glands), respectively. A highly adaptable pore in an otherwise conserved ion channel in the 4x6TM channel family is not consistent with a role for NALCN in directly gating a significant ion conductance that can be either sodium ions or calcium ions. NALCN was proposed to be an expressible Gd3+-sensitive, NMDG+-impermeant, non-selective and ohmic leak conductance in HEK-293T cells, but we were unable to distinguish these reported currents from leaky patch currents (ILP) in control HEK-293T cells. We suggest that NALCN functions as a sensor for the much larger UNC80/UNC79 complex, in a manner consistent with the coupling mechanism known for other weakly or non-conducting 4x6TM channel sensor proteins such as Nax or Cav1.1. We propose that NALCN serves as a variable sensor that responds to calcium or sodium ion flux, depending on whether the total cellular current density is generated more from calcium-selective or sodium-selective channels.  相似文献   

9.
The transient receptor potential cation channel, subfamily V, member 1 (TRPV1) is a non-selective cation channel that can be activated by a wide range of noxious stimuli, including capsaicin, acid, and heat. Blockade of TRPV1 activation by selective antagonists is under investigation in an attempt to identify novel agents for pain treatment. During pre-clinical development, the 1,8-naphthyridine 2 demonstrated unacceptably high levels of irreversible covalent binding. Replacement of the 1,8-naphthyridine core by a pyrido[2,3-b]pyrazine led to the discovery of compound 26 which was shown to have significantly lower potential for the formation of reactive metabolites. Compound 26 was characterized as an orally bioavailable TRPV1 antagonist with moderate brain penetration. In vivo, 26 significantly attenuated carrageenan-induced thermal hyperalgesia (CITH) and dose-dependently reduced complete Freund’s adjuvant (CFA)-induced chronic inflammatory pain after oral administration.  相似文献   

10.
A mutation of KCNQ1 gene encoding the alpha subunit of the channel mediating the slow delayed rectifier K+ current in cardiomyocytes may cause severe arrhythmic disorders. We identified KCNQ1(Y461X), a novel mutant gene encoding KCNQ1 subunit whose C-terminal domain is truncated at tyrosine 461 from a man with a mild QT interval prolongation. We made whole-cell voltage-clamp recordings from HEK-293T cells transfected with either of wild-type KCNQ1 [KCNQ1(WT)], KCNQ1(Y461X), or their mixture plus KCNE1 auxiliary subunit gene. The KCNQ1(Y461X)-transfected cells showed no delayed rectifying current. The cells transfected with both KCNQ1(WT) and KCNQ1(Y461X) showed the delayed rectifying current that is thought to be mediated largely by homomeric channel consisting of KCNQ1(WT) subunit because its voltage-dependence of activation, activation rate, and deactivation rate were similar to the current in the KCNQ1(WT)-transfected cells. The immunoblots of HEK-293T cell-derived lysates showed that KCNQ1(Y461X) subunit cannot form channel tetramers by itself or with KCNQ1(WT) subunit. Moreover, immunocytochemical analysis in HEK-293T cells showed that the surface expression level of KCNQ1(Y461X) subunit was very low with or without KCNQ1(WT) subunit. These findings suggest that the massive loss of the C-terminal domain of KCNQ1 subunit impairs the assembly, trafficking, and function of the mutant subunit-containing channels, whereas the mutant subunit does not interfere with the functional expression of the homomeric wild-type channel. Therefore, the homozygous but not heterozygous inheritance of KCNQ1(Y461X) might cause major arrhythmic disorders. This study provides a new insight into the structure–function relation of KCNQ1 channel and treatments of cardiac channelopathies.  相似文献   

11.
Safranal, contained in Crocus sativus L., exerts anti‐inflammatory and analgesic effects. However, the underlying mechanisms for such effects are poorly understood. We explored whether safranal targets the transient receptor potential ankyrin 1 (TRPA1) channel, which in nociceptors mediates pain signals. Safranal by binding to specific cysteine/lysine residues, stimulates TRPA1, but not the TRP vanilloid 1 and 4 channels (TRPV1 and TRPV4), evoking calcium responses and currents in human cells and rat and mouse dorsal root ganglion (DRG) neurons. Genetic deletion or pharmacological blockade of TRPA1 attenuated safranal‐evoked release of calcitonin gene‐related peptide (CGRP) from rat and mouse dorsal spinal cord, and acute nociception in mice. Safranal contracted rat urinary bladder isolated strips in a TRPA1‐dependent manner, behaving as a partial agonist. After exposure to safranal the ability of allyl isothiocyanate (TRPA1 agonist), but not that of capsaicin (TRPV1 agonist) or GSK1016790A (TRPV4 agonist), to evoke currents in DRG neurons, contraction of urinary bladder strips and CGRP release from spinal cord slices in rats, and acute nociception in mice underwent desensitization. As previously shown for other herbal extracts, including petasites or parthenolide, safranal might exert analgesic properties by partial agonism and selective desensitization of the TRPA1 channel.  相似文献   

12.
Eicosanoids play a crucial role in inflammatory pain. However, there is very little knowledge about the contribution of oxidized linoleic acid metabolites in inflammatory pain and peripheral sensitization. Here, we identify 12,13-dihydroxy-9Z-octadecenoic acid (12,13-DiHOME), a cytochrome P450-derived linoleic acid metabolite, as crucial mediator of thermal hyperalgesia during inflammatory pain. We found 12,13-DiHOME in increased concentrations in peripheral nervous tissue during acute zymosan- and complete Freund's Adjuvant-induced inflammatory pain. 12,13-DiHOME causes calcium transients in sensory neurons and sensitizes the transient receptor potential vanilloid 1 (TRPV1)-mediated intracellular calcium increases via protein kinase C, subsequently leading to enhanced TRPV1-dependent CGRP-release from sensory neurons. Peripheral injection of 12,13-DiHOME in vivo causes TRPV1-dependent thermal pain hypersensitivity. Finally, application of the soluble epoxide hydrolase (sEH)-inhibitor TPPU reduces 12,13-DiHOME concentrations in nervous tissue and reduces zymosan- and CFA-induced thermal hyperalgesia in vivo. In conclusion, we identify a novel role for the lipid mediator 12,13-DiHOME in mediating thermal hyperalgesia during inflammatory pain and propose a novel mechanism that may explain the antihyperalgesic effects of sEH inhibitors in vivo.  相似文献   

13.
TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 cells, however, no interaction was observed with TRPC3, TRPC4, or TRPC5. Ca2+ and Na+ currents of TRPV6-overexpressing HEK293 cells are significantly reduced by co-expression of TRPC1, correlating with a dramatically suppressed plasma membrane targeting of TRPV6. In line with their intracellular retention, remaining currents of TRPC1 and TRPV6 co-expression resemble in current-voltage relationship that of TRPV6. Studying the N-terminal ankyrin like repeat domain, structurally similar in the two proteins, we have found that these cytosolic segments were sufficient to mediate a direct heteromeric interaction. Moreover, the inhibitory role of TRPC1 on TRPV6 influx was also maintained by expression of only its N-terminal ankyrin-like repeat domain. Our experiments provide evidence for a functional interaction of TRPC1 with TRPV6 that negatively regulates Ca2+ influx in HEK293 cells.  相似文献   

14.
We have studied the modulation of gating properties of the Ca2+-permeable, cation channel TRPV4 transiently expressed in HEK293 cells. The phorbol ester 4αPDD transiently activated a current through TRPV4 in the presence of extracellular Ca2+. Increasing the concentration of extracellular Ca2+ ([Ca2+]e) reduced the current amplitude and accelerated its decay. This decay was dramatically delayed in the absence of [Ca2+]e. It was also much slower in the presence of [Ca2+]e in a mutant channel, obtained by a point mutation in the 6th transmembrane domain, F707A. Mutant channels, containing a single mutation in the C-terminus of TRPV4 (E797), were constitutively open. In conclusion, gating of the 4αPDD-activated TRPV4 channel depends on both extra- and intracellular Ca2+, and is modulated by mutations of single amino acid residues in the 6th transmembrane domain and the C-terminus of the TRPV4 protein.  相似文献   

15.
14,15-epoxyeicosatrienoic acid (14,15-EET) is implicated in regulating physiological functions of endothelial cells (ECs), yet the potential molecular mechanisms underlying the beneficial effects in ECs are not fully understood. In this study, we investigated whether transient receptor potential vanilloid receptor type 1 (TRPV1) is involved in 14,15-EET-mediated Ca2+ influx, nitric oxide (NO) production and angiogenesis. In human microvascular endothelial cells (HMECs), 14,15-EET time-dependently increased the intracellular level of Ca2+. Removal of extracellular Ca2+, pharmacological inhibition or genetic disruption of TRPV1 abrogated 14,15-EET-mediated increase of intracellular Ca2+ level in HMECs or TRPV1-transfected HEK293 cells. Furthermore, removal of extracellular Ca2+ or pharmacological inhibition of TRPV1 decreased 14,15-EET-induced NO production. 14,15-EET-mediated tube formation was abolished by TRPV1 pharmacological inhibition. In an animal experiment, 14,15-EET-induced angiogenesis was diminished by inhibition of TRPV1 and in TRPV1-deficient mice. TRPV1 may play a crucial role in 14,15-EET-induced Ca2+ influx, NO production and angiogenesis.  相似文献   

16.
A series of 2-sulfonamidopyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamide were investigated as hTRPV1 ligands. Systematic modification on the 2-sulfonamido group provided highly potent TRPV1 antagonists. The N-benzyl phenylsulfonamide derivatives 12 and 23 in particular showed higher affinities than that of lead compound 1. Compound 12 exhibited strong analgesic activity in the formalin pain model. Docking analysis of its chiral S-form 12S in our hTRPV1 homology model indicated that its high affinity might arise from additional hydrophobic interactions not present in lead compound 1S.  相似文献   

17.
Vanilloid receptors have a central role in the processing of nociceptive stimuli. TRPV1 null mice showed significant decrease in response to heat noxious stimuli. However, thermal sensitivity is still present suggesting that the TRPV1 is not an exclusive transducer of thermal stimuli. Additionally, tachykinin peptides play a central role in pain processing and expression levels may also contribute in modifying the pain threshold. The LC?CMS/MS analysis revealed that SP and NKA were significantly down-regulated in TRPV1?/? in spinal cord and brain tissues. In spinal cord, SP concentrations were 23.4?% lower (p?<?0.0049) and NKA concentrations were 22.0?% lower (p?<?0.0022) in TRPV1 null mice. Additionally, brain SP concentrations were 26.9?% lower (p?<?0.0260) and brain NKA concentrations were 31.9?% lower (p?<?0.0063) in TRPV1 null mice. These results clearly demonstrate that TPRV1 null mice exhibit lower SP and NKA concentrations in the central nervous system. The deficit of thermal responses may also be related to the down-regulations of SP and NKA.  相似文献   

18.
The transient receptor potential vanilloid type 5 (TRPV5) Ca2+ channel facilitates transcellular Ca2+ transport in the distal convoluted tubule (DCT) of the kidney. The channel is glycosylated with a complex type N-glycan and it has been postulated that hydrolysis of the terminal sialic acid(s) stimulate TRPV5 activity. The present study delineates the role of the N-glycan in TRPV5 activity using biochemical assays in Human Embryonic Kidney 293 cells expressing TRPV5, isoelectric focusing and total internal reflection fluorescent microscopy. The anti-aging hormone klotho and other glycosidases stimulate TRPV5-dependent Ca2+ uptake. Klotho was found to increase the plasma membrane stability of TRPV5, via the TRPV5 N-glycan. Sialidase mimicked this stimulatory action. However, this effect was independent of the N-glycosylation state of TRPV5, since the N-glycosylation mutant (TRPV5N358Q) was activated to the same extent. We showed that the increased TRPV5 activity after sialidase treatment is caused by inhibition of lipid raft-mediated internalization. In addition, sialidase modified the N-glycan of transferrin, a model glycoprotein, differently from klotho. Previous studies showed that after klotho treatment, galectin-1 binds the TRPV5 N-glycan and thereby increases TRPV5 activity. However, galectin-3, but not galectin-1, was expressed in the DCT. Furthermore, an increase in TRPV5-mediated Ca2+ uptake was detected after galectin-3 treatment. In conclusion, two distinct TRPV5 stimulatory mechanisms were demonstrated; a klotho-mediated effect that is dependent on the N-glycan of TRPV5 and a sialidase-mediated stimulation that is lipid raft-dependent and independent of the N-glycan of TRPV5.  相似文献   

19.
The inositol (1,4,5)-trisphosphate receptor (InsP3R) mediates Ca2+ release from intracellular stores in response to generation of second messenger InsP3. InsP3R was biochemically purified and cloned, and functional properties of native InsP3-gated Ca2+ channels were extensively studied. However, further studies of InsP3R are obstructed by the lack of a convenient functional assay of expressed InsP3R activity. To establish a functional assay of recombinant InsP3R activity, transient heterologous expression of neuronal rat InsP3R cDNA (InsP3R-I, SI− SII+ splice variant) in HEK-293 cells was combined with the planar lipid bilayer reconstitution experiments. Recombinant InsP3R retained specific InsP3 binding properties (K d = 60 nM InsP3) and were specifically recognized by anti–InsP3R-I rabbit polyclonal antibody. Density of expressed InsP3R-I was at least 20-fold above endogenous InsP3R background and only 2–3-fold lower than InsP3R density in rat cerebellar microsomes. When incorporated into planar lipid bilayers, the recombinant InsP3R formed a functional InsP3-gated Ca2+ channel with 80 pS conductance using 50 mM Ba2+ as a current carrier. Mean open time of recombinant InsP3-gated channels was 3.0 ms; closed dwell time distribution was double exponential and characterized by short (18 ms) and long (130 ms) time constants. Overall, gating and conductance properties of recombinant neuronal rat InsP3R-I were very similar to properties of native rat cerebellar InsP3R recorded in identical experimental conditions. Recombinant InsP3R also retained bell-shaped dependence on cytosolic Ca2+ concentration and allosteric modulation by ATP, similar to native cerebellar InsP3R. The following conclusions are drawn from these results. (a) Rat neuronal InsP3R-I cDNA encodes a protein that is either sufficient to produce InsP3-gated channel with functional properties identical to the properties of native rat cerebellar InsP3R, or it is able to form a functional InsP3-gated channel by forming a complex with proteins endogenously expressed in HEK-293 cells. (b) Successful functional expression of InsP3R in a heterologous expression system provides an opportunity for future detailed structure–function characterization of this vital protein.  相似文献   

20.
A series of 2-aryl pyridine C-region derivatives of 2-(3-fluoro-4-methylsulfonylaminophenyl)propanamides were investigated as hTRPV1 antagonists. Multiple compounds showed highly potent TRPV1 antagonism toward capsaicin comparable to previous lead 7. Among them, compound 9 demonstrated anti-allodynia in a mouse neuropathic pain model and blocked capsaicin-induced hypothermia in a dose-dependent manner. Docking analysis of 9 with our hTRPV1 homology model provided insight into its specific binding mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号