首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heart rate variability (HRV) reflects an influence of autonomic nervous system on heart work. In healthy subjects, ratio between low and high frequency components (LF/HF ratio) of HRV spectra represents a measure of sympatho-vagal balance. The ratio was defined by the authorities as an useful clinical tool, but it seems that it fails to summarise sympatho-vagal balance in a clinical setting. Value of the method was re-evaluated in several categories of cardiac patients. HRV was analysed from 24-hour Holter ECGs in 132 healthy subjects, and 2159 cardiac patients dichotomised by gender, median of age, diagnosis of myocardial infarction or coronary artery surgery, left ventricular systolic function and divided by overall HRV into several categories. In healthy subjects, LF/HF ratio correlated with overall HRV negatively, as expected. The paradoxical finding was obtained in cardiac patients; the lower the overall HRV and the time-domain indices of vagal modulation activity were the lower the LF/HF ratio was. If used as a measure of sympatho-vagal balance, long-term recordings of LF/HF ratio contradict to clinical finding and time-domain HRV indices in cardiac patients. The ratio cannot therefore be used as a reliable marker of autonomic activity in a clinical setting.  相似文献   

2.
It has not hitherto been clarified whether there is an association between dietary behavior and circadian variation in autonomic nervous system activity among shift workers. This study examines diurnal 24-h rhythm in heart rate variability (HRV) and dietary behavior among rotating shift workers, while taking into account the sleep-wake cycle and physical activity. The subjects were 11 female and 2 male nurses or caregivers working in a rotating 2-shift system at a health care facility. All the subjects were asked to undergo 24-h electrocardiograph and step count recordings, and to record the time of each meal and the amounts of each food and beverage consumed. Coarse graining spectral analysis was used for approximately 10-min segments of HRV to derive the total power (TOT: >0.04 Hz) of the periodic components and the integrated power of periodic components in the low-frequency (LF: 0.04–0.15 Hz) and high-frequency (HF: >0.15 Hz) ranges. Then the ratio of HF power to TOT (HF nu) and the ratio of LF power to HF power (LF/HF) were calculated to assess cardiac vagal tone and cardiac sympathovagal balance, respectively. Single cosinor analysis was used to obtain 24-h period variations in both variables of HRV. Acrophases of HF nu and LF/HF expressed in time since awakening were significantly (p<0.05) delayed for subjects having breakfast at a later time after awakening. Multivariable regression analysis indicated that the timing of breakfast, the ratio of energy intake at dinner to total energy intake, and total energy intake were correlated to the acrophases of HF nu and/or LF/HF. These results suggest that the phase angle between circadian variation in cardiac autonomic nervous system activity and the sleep-wake cycle may be associated with dietary behavior in shift workers.  相似文献   

3.
Morning hours are associated with a heightened risk of adverse cardiovascular events. Recent evidence suggests that the sleep-wake cycle and endogenous circadian system modulate cardiac function in humans and may contribute to these epidemiological findings. The aim of the present study was to investigate the interaction between circadian and sleep-wake-dependent processes on heart rate variability (HRV). Fifteen diurnally active healthy young adults underwent a 72-h ultradian sleep-wake cycle (USW) procedure (alternating 60-min wake episodes in dim light and 60-min nap opportunities in total darkness) in time isolation. The present study revealed a significant main effect of sleep-wake-dependent and circadian processes on cardiac rhythmicity, as well as a significant interaction between these processes. Turning the lights off was associated with a rapid increase in mean RR interval and cardiac parasympathetic modulation (high-frequency [HF] power), whereas low-frequency (LF) power and sympathovagal balance (LF:HF ratio) were reduced (p?≤?.001). A significant circadian rhythm in mean RR interval and HRV components was observed throughout the wake and nap episodes (p?≤?.001). Sleep-to-wake transitions occurring in the morning were associated with maximal shifts towards sympathetic autonomic activation as compared to those occurring during the rest of the day. Namely, peak LF:HF ratio was observed in the morning, coincidental with peak salivary cortisol levels. These results contribute to our understanding of the observed increase in cardiovascular vulnerability after awakening in the morning.  相似文献   

4.
We investigated the characteristics of autonomic nervous function in Zucker-fatty and Zucker-lean rats. For this purpose, a long-term electrocardiogram (ECG) was recorded from conscious and unrestrained rats using a telemetry system, and the autonomic nervous function was investigated by power spectral analysis of heart rate variability (HRV). Although heart rate (HR) in Zucker-fatty rats was lower than that in Zucker-lean rats throughout 24 h, apparent diurnal variation in HR was observed in both strains and HR during the dark period was significantly higher than that in light period. Diurnal variation in locomotor activity (LA) in Zucker-fatty rats was also observed, but LA was lower than that in Zucker lean rats, especially during the dark period. There were no significant differences, however, in high-frequency (HF) power, low-frequency (LF) power, and the LF/HF ratio between Zucker-fatty and Zucker-lean rats. The circadian rhythm of these parameters was mostly preserved in both strains of rats. Moreover, the effect of autonomic blockades on HRV was nearly the same in Zucker-fatty and Zucker-lean rats. These results suggest that the autonomic nervous function of insulin-resistant Zucker-fatty rats remain normal, from the aspect of power spectral analysis of HRV.  相似文献   

5.
Seasonal variation in heart rate variability in asthmatic children   总被引:3,自引:0,他引:3  
Asthma is a "seasonal disease" with symptoms either aggravated by environmental changes during specific seasons or prevalent at certain times of the year for other reasons. We examined whether the heart rate variability (HRV) of asthmatic children changes by season. The HRV during a portion of one night (00:00-04:00) and day (12:00-16:00) and the entire 24h period (00:00-24:00) during each of the four seasons was analyzed. The data of 95 children with asthma and 106 healthy children, as controls, were assessed. In children with asthma during the 24h period, seasonal variation in the low-frequency (LF) band (0.04-0.15 Hz) and the high-frequency (HF) band (0.15-0.4 Hz) were detected (HF: F=6.81, p=.0003; LF: F=4.18, p= .008). The HF value in the summer was significantly higher than in autumn and spring (Scheffe test: autumn vs. summer, s = 4.46, p < .001: spring vs. summer, s = 2.86, p < .05), while the LF value in autumn was significantly lower than in summer (s = 3.42, p < .01). In the control group, no seasonal variation in HF, LF, or LF/HF was detected. The findings infer the HRV, a surrogate measure of autonomic nervous system function, of asthmatic children is more susceptible to seasonal changes brought about by either endogenous annual rhythms or environmental weather phenomena.  相似文献   

6.
We established characteristics of power spectral analysis of heart rate variability, and assessed the diurnal variations of autonomic nervous function in guinea pigs. For this purpose, an electrocardiogram (ECG) was recorded for 24 hr from conscious and unrestrained guinea pigs using a telemetry system. There were two major spectral components, at low frequency (LF) and high frequency (HF) bands, in the power spectrum of HR variability. On the basis of these data, we defined two frequency bands of interest: LF (0.07-0.7 Hz) and HF (0.7-3.0 Hz). The power of LF was higher than that of HF in the normal guinea pigs. Atropine significantly reduced power at HF. Propranolol also significantly reduced power at LF. Furthermore, the decrease in the parasympathetic mechanism produced by atropine was reflected in a slight increase in the LF/HF ratio. The LF/HF ratio appeared to follow the reductions of sympathetic activity produced by propranolol. Autonomic blockade studies indicated that the HF component reflected parasympathetic activity and the LF/HF ratio seemed to be a convenient index of autonomic balance. Nocturnal patterns, in which the values of heart rate in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed. However, the HF, LF and the LF/HF ratio showed no daily pattern. These results suggest that the autonomic nervous function in guinea pigs has no clear circadian rhythmicity. Therefore, this information may be useful for future studies concerning the autonomic nervous function in this species.  相似文献   

7.
Diabetic cardiovascular autonomic neuropathy (CAN) carries an increased risk of mortality. The early detection and characterization of CAN has traditionally been based on the results of autonomic reflex tests (AFTs). A variety of different measures to quantify 24-hour heart rate variability (HRV) have recently been introduced, but their normal ranges, reliability, and validity in patients with CAN have not been adequately studied. We established the normal ranges of statistical (SDNN index, CV, SNN50, RMSSD), geometric (triangular index (TI), triangular interpolation (TINN), top angle index [TAI]), frequency domain (spectral power in the VLF, LF, and HF bands, LF/HF ratio, LF in normalized units [NU]), and non-linear measures (CV1 and CV2 of the Poincaré plot) of 24-hour HRV in 94 healthy control subjects. Day-to-day reproducibility was evaluated on two occasions in 17 healthy subjects and 9 diabetic patients. The parameters of HRV were computed over time periods representing the day (6:00-24:00 hours), night (00:00-6:00 hours), and 24 hours in total. The results of all indexes, except for the LF/HF ratio and LF-NU, declined significantly with increasing age (p<0.05), but were independent of sex and BMI. The statistical, geometric, and non-linear measures (p<0.05), but not the frequency-domain parameters decreased significantly with increasing heart rate. Since the HRV data showed log normal distribution, log transformation was used to define the age-related lower limits of normal at the 2.5th centile. Intraindividual reproducibility was highest for the geometric measures. The nonlinear and statistical parameters also showed high reliability, except for the SNN50. The repeatability of the frequency domain measures was somewhat lower but still satisfactory. Reproducibility was lower in the diabetic than in the control group, higher during the day than during the night, and better than that reported previously for the AFTs. In conclusion, in healthy subjects the measures of 24-h HRV are not related to sex or BMI, but strongly dependent on age and heart rate, the latter except for the frequency domain measures. The majority of the HRV measures, in particular the geometric parameters, show a relatively high intraindividual reproducibility which underlines their suitability for the use in prospective studies.  相似文献   

8.
ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) and Asthma patients exhibit exacerbation of symptoms in night hours and early morning. Temporal variability in airway caliber have been reported in past using peak expiratory flow rate which represents large airways caliber, while in COPD and Asthma, smaller airways are particularly affected. We studied circadian variability of airway caliber using Forced Expiratory Volume in the First Second (FEV1) and Mid Expiratory Flow rate.

Methods: Male volunteers (18–26 years), having similar daily routine were recruited. Spirometry was performed at 5: 00, 8:00, 11:00, 14:00, 17:00, 20:00 and 23:00 h. Data from 104 subjects was analyzed for diurnal variability parameters viz., amplitude percent mean and standard deviation percent of mean. For circadian rhythm Cosinor curve was fitted and rhythm characteristics in terms of MESOR, Amplitude and Acrophase were determined.

Results: Repeated measures ANOVA revealed significant differences in spirometric parameters measured at different time points during the day. In general, spirometric parameters follow a sinusoidal pattern and exhibit minimum values during night hours and maximum values during day time. FEV1 Cosinor rhythm was significant in 31% of subjects (Zero amplitude test). The distribution of acrophase revealed interindividual differences in chronophenotypes. Variability was minimum for FEV1% and maximum for FEF75 suggesting dynamic interplay of airway geometry and neuro-chemical influences.

Conclusion: The presence of different chronophenotypes in normal subjects suggests that the nocturnal asthma may also be a different phenotype. Availability of portable spirometers and home monitoring thus may be required for ascertaining chronophenotype and tailoring chronotherapeutic interventions.  相似文献   

9.
Incidence of cardiovascular events follows a circadian rhythm with peak occurrence during morning. Disturbance of autonomic control caused by exercise had raised the question of the safety in morning exercise and its recovery. Furthermore, we sought to investigate whether light aerobic exercise performed at night would increase HR and decrease HRV during sleep. Therefore, the aim of this study was to test the hypothesis that morning exercise would delay HR and HRV recovery after light aerobic exercise, additionally, we tested the impact of late night light aerobic exercise on HR and HRV during sleep in sedentary subjects. Nine sedentary healthy men (age 24 ± 3 yr; height 180 ± 5 cm; weight 79 ± 8 kg; fat 12 ± 3%; mean±SD) performed 35 min of cycling exercise, at an intensity of first anaerobic threshold, at three times of day (7 a.m., 2 p.m. and 11 p.m.). R-R intervals were recorded during exercise and during short-time (60 min) and long-time recovery (24 hours) after cycling exercise. Exercise evoked increase in HR and decrease in HRV, and different times of day did not change the magnitude (p < 0.05 for time). Morning exercise did not delay exercise recovery, HR was similar to rest after 15 minutes recovery and HRV was similar to rest after 30 minutes recovery at morning, afternoon, and night. Low frequency power (LF) in normalized unites (n.u.) decreased during recovery when compared to exercise, but was still above resting values after 60 minutes of recovery. High frequency power (HF-n.u.) increased after exercise cessation (p < 0.05 for time) and was still below resting values after 60 minutes of recovery. The LF/HF ratio decreased after exercise cessation (p < 0.05 for time), but was still different to baseline levels after 60 minutes of recovery. In conclusion, morning exercise did not delay HR and HRV recovery after light aerobic cycling exercise in sedentary subjects. Additionally, exercise performed in the night did change autonomic control during the sleep. So, it seems that sedentary subjects can engage physical activity at any time of day without higher risk.  相似文献   

10.
Autism spectrum disorder (ASD) is a developmental disorder marked by difficulty in social interactions and communication. ASD also often present symptoms of autonomic nervous system (ANS) functioning abnormalities. In individuals with autism the sympathetic branch of the ANS presents an over-activation on a background of the parasympathetic activity deficits, creating an autonomic imbalance, evidenced by a faster heart rate with little variation and increased tonic electrodermal activity. The objective of this study was to explore the effect of 12 sessions of 0.5 Hz repetitive transcranial magnetic stimulation (rTMS) over dorsolateral prefrontal cortex (DLPFC) on autonomic activity in children with ASD. Electrocardiogram and skin conductance level (SCL) were recorded and analyzed during each session of rTMS. The measures of interest were time domain (i.e., R–R intervals, standard deviation of cardiac intervals, NN50-cardio-intervals >50 ms different from preceding interval) and frequency domain heart rate variability (HRV) indices [i.e., power of high frequency (HF) and low frequency (LF) components of HRV spectrum, LF/HF ratio]. Based on our prior pilot studies it was proposed that the course of 12 weekly inhibitory low-frequency rTMS bilaterally applied to the DLPFC will improve autonomic balance probably through improved frontal inhibition of the ANS activity, and will be manifested in an increased length of cardiointervals and their variability, and in higher frequency-domain HRV in a form of increased HF power, decreased LF power, resulting in decreased LF/HF ratio, and in decreased SCL. Our post-12 TMS results showed significant increases in cardiac intervals variability measures and decrease of tonic SCL indicative of increased cardiac vagal control and reduced sympathetic arousal. Behavioral evaluations showed decreased irritability, hyperactivity, stereotype behavior and compulsive behavior ratings that correlated with several autonomic variables.  相似文献   

11.
The effect of deep breathing controlled in both rate and amplitude on the heart rate variability (HRV) and respiration-dependent blood flow oscillations was studied in the forearm and finger-pad skin of healthy 18- to 25-year-old volunteers. In order to reveal the effects of the divisions of the autonomic nervous system on the amplitudes of respiratory sinus arrhythmia (RSA) and skin blood flow oscillations, we studied the indices of the cardiovascular system in two groups of subjects with respectively lower and higher values of the sympatho-vagal balance. This index was calculated as a ratio of low frequency and high frequency HRV spectral power (LF/HF) under the conditions of spontaneous breathing. It was found that, in subjects with a predominant parasympathetic tone, the amplitudes of RSA and the rate of blood flow in the finger-pad skin were higher compared to subjects with a predominant sympathetic tone during respiration with the frequency lower than 4 cycle/min. In the forearm skin, where sympathetic innervation is weaker compared to the finger-pad skin, there were no significant differences in respiration-dependent oscillations of the rate of blood flow in two groups of subjects.  相似文献   

12.
Previous work from our laboratory using heart rate variability (HRV) has demonstrated that women before menopause have a more dominant parasympathetic and less effective sympathetic regulations of heart rate compared with men. Because it is still not clear whether normal or preeclamptic pregnancy coincides with alternations in the autonomic functions, we evaluated the changes of HRV in 17 nonpregnant, 17 normotensive pregnant, and 11 preeclamptic women who were clinically diagnosed without history of diabetic neuropathy, cardiac arrhythmia, and other cardiovascular diseases. Frequency-domain analysis of short-term, stationary R-R intervals was performed to evaluate the total variance, low-frequency power (LF; 0.04-0.15 Hz), high-frequency power (HF; 0.15-0.40 Hz), ratio of LF to HF (LF/HF), and LF in normalized units (LF%). Natural logarithm transformation was applied to variance, LF, HF, and LF/HF for the adjustment of the skewness of distribution. We found that the normal pregnant group had a lower R-R value and HF but had a higher LF/HF and LF% compared with the nonpregnant group. The preeclamptic group had lower HF but higher LF/HF compared with either the normal pregnant or nonpregnant group. Our results suggest that normal pregnancy is associated with a facilitation of sympathetic regulation and an attenuation of parasympathetic influence of heart rate, and such alterations are enhanced in preeclamptic pregnancy.  相似文献   

13.
Asthma is a “seasonal disease” with symptoms either aggravated by environmental changes during specific seasons or prevalent at certain times of the year for other reasons. We examined whether the heart rate variability (HRV) of asthmatic children changes by season. The HRV during a portion of one night (00:00–04:00) and day (12:00–16:00) and the entire 24h period (00:00–24:00) during each of the four seasons was analyzed. The data of 95 children with asthma and 106 healthy children, as controls, were assessed. In children with asthma during the 24h period, seasonal variation in the low-frequency (LF) band (0.04–0.15 Hz) and the high-frequency (HF) band (0.15–0.4 Hz) were detected (HF: F = 6.81, p =.0003; LF: F = 4.18, p =.008. The HF value in the summer was significantly higher than in autumn and spring (Scheffe test: autumn vs. summer, s = 4.46, p<.001; spring vs. summer, s = 2.86, p<.05), while the LF value in autumn was significantly lower than in summer (s = 3.42, p <.01). In the control group, no seasonal variation in HF, LF, or LF/HF was detected. The findings infer the HRV, a surrogate measure of autonomic nervous system function, of asthmatic children is more susceptible to seasonal changes brought about by either endogenous annual rhythms or environmental weather phenomena. (Chronobiology International, 17(4), 503–511, 2000)  相似文献   

14.
Objective: To investigate the cardiovascular autonomic function in pediatric obesity of different duration by using standard time domain, spectral heart rate variability (HRV), and nonlinear methods. Research Methods and Procedures: Fifty obese children (13.9 ± 1.7 years) were compared with 12 lean subjects (12.9 ± 1.6 years). Obese children were classified as recent obese (ROB) (<4 years), intermediate obese (IOB) (4 to 7 years), and long‐term obese (OB) (>7 years). In all participants, we performed blood pressure (BP) measurements, laboratory tests, and 24‐hour electrocardiogram/ambulatory BP monitoring. The spectral power was quantified in total power, very low‐frequency (LF) power, high‐frequency (HF) power, and LF to HF ratio. Total, long‐term, and short‐term time domain HRV were calculated. Poincaré plot and quadrant methods were used as nonlinear techniques. Results: All obese groups had higher casual and ambulatory BP and higher glucose, homeostasis model assessment, and triglyceride levels. All parameters reflecting parasympathetic tone (HF band, root mean square successive difference, proportion of successive normal‐to‐normal intervals, and scatterplot width) were significantly and persistently reduced in all obese groups in comparison with lean controls. LF normalized units, LF/HF, and cardiac acceleration (reflecting sympathetic activation) were significantly increased in the ROB group. In IOB and OB groups, LF, but not nonlinear, measures were similar to lean controls, suggesting biphasic behavior of sympathetic tone, whereas nonlinear analysis showed a decreasing trend with the duration of obesity. Long‐term HRV measures were significantly reduced in ROB and IOB. Discussion: Autonomic nervous system changes in adolescent obesity seem to be related to its duration. Nonlinear methods of scatterplot and quadrant analysis permit assessment of autonomic balance, despite measuring different aspects of HRV.  相似文献   

15.

Background

Ganglionated plexuses (GP) are terminal parts of cardiac autonomous nervous system (ANS). Radiofrequency ablation (RFA) for atrial fibrillation (AF) possibly affects GP. Changes in heart rate variability (HRV) after RFA can reflect ANS modulation.

Methods

Epicardial RFA of GP on the left atrium (LA) was performed under the general anesthesia in 15 mature Romanov sheep. HRV was used to assess the alterations in autonomic regulation of the heart. A 24???hour ECG monitoring was performed before the ablation, 2 days after it and at each of the 12 following months. Ablation sites were evaluated histologically.

Results

There was an instant change in HRV parameters after the ablation. A standard deviation of all intervals between normal QRS (SDNN), a square root of the mean of the squared differences between successive normal QRS intervals (RMSSD) along with HRV triangular index (TI), low frequency (LF) power and high frequency (HF) power decreased, while LF/HF ratio increased. Both the SDNN, LF power and the HF power changes persisted throughout the 12???month follow???up. Significant decrease in RMSSD persisted only for 3 months, HRV TI for 6 months and increase in LF/HF ratio for 7 months of the follow???up. Afterwards these three parameters were not different from the preprocedural values.

Conclusions

Epicardial RFA of GP’s on the ovine left atrium has lasting effect on the main HRV parameters (SDNN, HF power and LF power). The normalization of RMSSD, HRV TI and LF/HF suggests that HRV after epicardial RFA of GPs on the left atrium might restore over time.
  相似文献   

16.
The question whether pulsed electromagnetic field (PEMF) can affect the heart rhythm is still controversial. This study investigates the effects on the cardiocirculatory system of ELF-PEMFs. It is a follow-up to an investigation made of the possible therapeutic effect ELF-PEMFs, using a commercially available magneto therapeutic unit, had on soft tissue injury repair in humans. Modulation of heart rate (HR) or heart rate variability (HRV) can be detected from changes in periodicity of the R-R interval and/or from changes in the numbers of heart-beat/min (bpm), however, R-R interval analysis gives only a quantitative insight into HRV. A qualitative understanding of HRV can be obtained considering the power spectral density (PSD) of the R-R intervals Fourier transform. In this study PSD is the investigative tool used, more specifically the low frequency (LF) PSD and high frequency (HF) PSD ratio (LF/HF) which is an indicator of sympatho-vagal balance. To obtain the PSD value, variations of the R-R time intervals were evaluated from a continuously recorded ECG. The results show a HR variation in all the subjects when they are exposed to the same ELF-PEMF. This variation can be detected by observing the change in the sympatho-vagal equilibrium, which is an indicator of modulation of heart activity. Variation of the LF/HF PSD ratio mainly occurs at transition times from exposure to nonexposure, or vice versa. Also of interest are the results obtained during the exposure of one subject to a range of different ELF-PEMFs. This pilot study suggests that a full investigation into the effect of ELF-PEMFs on the cardiovascular system is justified.  相似文献   

17.
Sex differences in the prevalence of inflammatory disorders exist, perhaps due to sex differences in cellular mechanisms that contribute to proinflammatory cytokine activity. This study analyzed sex differences of monocyte intracellular expression of IL-6 and its associations with reproductive hormones and autonomic mechanisms in 14 matched pairs of men and women (n = 28). Monocyte intracellular IL-6 production was repeatedly assessed over two circadian periods. Sympathetic balance was estimated by heart rate variability and the ratio of power in the low-frequency (LF) to high-frequency (HF); vagal tone was indexed by the power of HF component. As compared to men, women showed greater monocyte expression of IL-6 across the circadian period. In addition, women showed lower sympathetic balance (LF/HF ratio), and greater levels of vagal tone (HF power). In women, but not men, sympathovagal balance was negatively associated with monocyte IL-6 expression, whereas vagal tone was positively associated with production of this cytokine. Levels of reproductive hormones were not related to monocyte IL-6 expression. The marked increase in monocyte expression of interleukin-6 in women has implications for understanding sex differences in risk of inflammatory disorders. Additionally, these data suggest that sex differences in sympathovagal balance or vagal tone may be a pathway to explain sex differences in IL-6 expression. Interventions that target autonomic mechanisms might constitute new strategies to constrain IL-6 production with impacts on inflammatory disease risk in women.  相似文献   

18.

Heart rate variability (HRV) and body temperature during the sleep onset period was examined. The core body temperature and electrocardiogram were recorded continuously beginning 1 h before lights out (LO) until the end of the first rapid eye movement sleep (REM) in 14 young healthy subjects. HRV was calculated by the MemCalc method. The time course changes in body temperature and HRV was analyzed before and after sleep onset, and during the following eight consecutive phases: the 60 min before LO, the 30 min before LO, LO, first stage 2 (sleep onset), first slow wave sleep (SWS), stage 2 just before REM, start of REM, and end of REM. A clear decline was observed in the ratio of the low frequency (LF) to high frequency (HF) component of HRV (LF/HF), normalized LF (LF/(LF + HF)), and body temperature prior to sleep onset both in the time course of the sleep onset period and in the consecutive phases. The HF increased prior to sleep onset in the consecutive phases, while no clear increase was observed in the time course of sleep onset period. Changes in LF/(LF + HF) and LF/HF preceded SWS and REM. These results suggest the existence of a strong coupling between the cardiac autonomic nervous system and body temperature at the sleep onset period that may not be circadian effects. Furthermore, LF/(LF + HF) and LF/HF may possibly anticipate sleep and the onset of each sleep stage.

  相似文献   

19.
The aim of the present study was to evaluate, by heart rate variability (HRV) with 24-hours ECG Holter (HRV), the circadian autonomic activity in offspring of type 2 diabetic subjects and the relation with insulin-resistance. METHODS: 50 Caucasian offsprings of type 2 diabetic subjects were divided in two groups: insulin-resistant offsprings (IR) and non insulin-resistant offsprings (NIR). Autonomic nervous activity was studied by HRV. Time domain and spectral analysis (low frequency, LF, and high frequency, HF, provide markers of sympathetic and parasympathetic modulation when assessed in normalized units) were evaluated. RESULTS. Time domain showed a reduction of total SDNN in IR (p < 0.001) and NIR (p 0.047) versus controls. Spectral analysis showed a total and night LF higher in IR and NIR than in control group (all p < 0.001). CONCLUSION. In frequency domain, the analysis of sympathetic (LF) and parasympathetic (HF) component evidenced an association between the offspring of type 2 diabetic subjects and a sympathetic overactivity. A global reduction and alteration of circadian rhythm of autonomic activity are present in offspring of type 2 diabetic patients with and without insulin resistance. The data of our study suggested that an autonomic impairment is associated with the familiarity for type 2 diabetes independently to insulin resistance and that an impairment of autonomic system activity could precede the insulin resistance.  相似文献   

20.
This study was designed to test the hypothesis that alteration of cardiovascular autonomic functions by vegetarian diets in healthy postmenopausal women is related to lipid metabolism. A total of 70 healthy postmenopausal women not on hormone therapy participated in this study: 35 were vegetarians (mean age 55.0 years) and 35 were omnivores (mean age 55.1 years). Cardiovascular autonomic functions and baroreflex sensitivity were evaluated by specific frequency-domain measures of heart rate variability (HRV) and arterial blood pressure fluctuation. The vegetarians had statistically significant lowered blood pressure, total cholesterol, low-density lipoprotein (LDL) cholesterol, triglyceride, and fasting glucose levels compared with the omnivores. The vegetarians exhibited a significant higher total power, low-frequency (LF; 0.04-0.15 Hz) and high-frequency (HF; 0.15-0.4 Hz) of HRV and increased baroreflex sensitivity measures [Brr(LF) and Brr(HF)] compared with the omnivores. Total power, LF and HF of HRV, Brr(LF), and Brr(HF) were significantly and negatively correlated with LDL-cholesterol concentrations (P < 0.01). We concluded that the increases of cardiac vagal activity and baroreflex sensitivity by vegetarian diets in postmenopausal women are inversely related to LDL-cholesterol levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号