首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclosporin A suppressed humoral immune response of Galleria mellonella larvae. Insects were immunized with LPS Pseudomonas aeruginosa and then injected with cyclosporin A. Immunosuppressive effects were expressed both, in larvae treated with cyclosporin A at the initial phase of immune response and at the effector phase of antibacterial immunity. Cyclosporin A moderately decreased lysozyme activity and significantly decreased antibacterial activity peptides against Escherichia coli. Immunosuppressive effects of cyclosporin A were observed after immunoblotting with antibodies anti-G. mellonella lysozyme. Tricine SDS/PAGE shown that synthesis of antibacterial peptides of larvae treated with cyclosporin A was considerably inhibited. Insects of impaired immune response by cyclosporin A action lost protective immunity to insect bacterial pathogen P. aeruginosa.  相似文献   

2.
Host plant chemical composition critically shapes the performance of insect herbivores feeding on them. Some insects have become specialized on plant secondary metabolites, and even use them to their own advantage such as defense against predators. However, infection by plant pathogens can seriously alter the interaction between herbivores and their host plants. We tested whether the effects of the plant secondary metabolites, iridoid glycosides (IGs), on the performance and immune response of an insect herbivore are modulated by a plant pathogen. We used the IG‐specialized Glanville fritillary butterfly Melitaea cinxia, its host plant Plantago lanceolata, and the naturally occurring plant pathogen, powdery mildew Podosphaera plantaginis, as model system. Pre‐diapause larvae were fed on P. lanceolata host plants selected to contain either high or low IGs, in the presence or absence of powdery mildew. Larval performance was measured by growth rate, survival until diapause, and by investment in immunity. We assessed immunity after a bacterial challenge in terms of phenoloxidase (PO) activity and the expression of seven pre‐selected insect immune genes (qPCR). We found that the beneficial effects of constitutive leaf IGs, that improved larval growth, were significantly reduced by mildew infection. Moreover, mildew presence downregulated one component of larval immune response (PO activity), suggesting a physiological cost of investment in immunity under suboptimal conditions. Yet, feeding on mildew‐infected leaves caused an upregulation of two immune genes, lysozyme and prophenoloxidase. Our findings indicate that a plant pathogen can significantly modulate the effects of secondary metabolites on the growth of an insect herbivore. Furthermore, we show that a plant pathogen can induce contrasting effects on insect immune function. We suspect that the activation of the immune system toward a plant pathogen infection may be maladaptive, but the actual infectivity on the larvae should be tested.  相似文献   

3.
Serine protease inhibitors (serpins), evolutionary old, structurally conserved molecules, are a superfamily of proteins found in almost all living organisms. Serpins are relatively large, typically 350–500 amino acids in length, with three β‐sheets and seven to nine α‐helices folding into a conserved tertiary structure with a reactive center loop. Serpins perform various physiological functions in insects, including development, digestion, host‐pathogen interactions, and innate immune response. In insects, the innate immune system is characterized as the first and major defense system against the invasion of microorganisms. Serine protease cascades play a critical role in the initiation of innate immune responses, such as melanization and the production of antimicrobial peptides, and are strictly and precisely regulated by serpins. Herein, we provide a microreview on the role of serpins in the insect‐host‐pathogen interactions, emphasizing their role in immune responses, particularly in diamondback moth (Plutella xylostella), highlighting the important discoveries and also the gaps that remain to be explored in future studies.  相似文献   

4.
This report concerns the effect of heat shock on host–pathogen interaction in Galleria mellonella infected with Bacillus thuringiensis. We show enhanced activity against Gram‐positive bacteria in the hemolymph of larvae pre‐exposed to heat shock before infection with B. thuringiensis. Heat shock influenced the protein pattern in the hemolymph of infected larvae: more peptides with a molecular weight below 10 kDa were detected in comparison with nonshocked animals. Additionally, we noticed that the amount of apolipophorin III (apoLp‐III) in the hemolymph decreased transiently following infection, which was considerably higher in larvae pre‐exposed to heat shock. On the other hand, its expression in the fat body showed a consequent infection‐induced decline, observed equally in shocked and nonshocked animals. This suggests that the amount of apoLp‐III in the hemolymph of G. mellonella larvae is regulated at multiple levels. We also report that this protein is more resistant to degradation in the hemolymph of larvae pre‐exposed to heat shock in comparison to nonshocked larvae. Two‐dimensional analysis revealed the presence of three isoforms of apoLp‐III, all susceptible to proteolytic degradation. However, one of them was the most abundant, both in the protease‐treated and untreated hemolymph. Taking into consideration that, in general, apoLp‐III has a stimulative effect on different immune‐related hemolymph proteins and peptides, the reported findings bring us closer to understanding the effect of heat shock on the resistance of G. mellonella to infection.  相似文献   

5.
The filamentous fungus Beauveria bassiana is a natural pathogen of the greater wax moth Galleria mellonella. Infection with this fungus triggered systemic immune response in G. mellonella; nevertheless, the infection was lethal if spores entered the insect hemocel. We observed melanin deposition in the insect cuticle and walls of air bags, while the invading fungus interrupted tissue continuity. We have shown colonization of muscles, air bags, and finally colonization and complete destruction of the fat body—the main organ responsible for the synthesis of defense molecules in response to infection. This destruction was probably not caused by simple fungal growth, because the fat body was not destroyed during colonization with a human opportunistic pathogen Candida albicans. This may mean that the infecting fungus is able to destroy actively the insect's fat body as part of its virulence mechanism. Finally, we were unable to reduce the extremely high virulence of B. bassiana against G. mellonella by priming of larvae with thermally inactivated fungal spores.  相似文献   

6.
The greater wax moth Galleria mellonella has been exploited worldwide as an alternative model host for studying pathogenicity and virulence factors of different pathogens, including Legionella pneumophila, a causative agent of a severe form of pneumonia called Legionnaires' disease. An important role in the insect immune response against invading pathogens is played by apolipophorin III (apoLp-III), a lipid- and pathogen associated molecular pattern-binding protein able to inhibit growth of some Gram-negative bacteria, including Legionella dumoffii. In the present study, anti-L. pneumophila activity of G. mellonella apoLp-III and the effects of the interaction of this protein with L. pneumophila cells are demonstrated. Alterations in the bacteria cell surface occurring upon apoLp-III treatment, revealed by Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy, are also documented. ApoLp-III interactions with purified L. pneumophila LPS, an essential virulence factor of the bacteria, were analysed using electrophoresis and immunoblotting with anti-apoLp-III antibodies. Moreover, FTIR spectroscopy was used to gain detailed information on the type of conformational changes in L. pneumophila LPS and G. mellonella apoLp-III induced by their mutual interactions. The results indicate that apoLp-III binding to components of bacterial cell envelope, including LPS, may be responsible for anti-L. pneumophila activity of G. mellonella apoLp-III.  相似文献   

7.
8.
9.
Galleria mellonella has emerged as a potential invertebrate model for scrutinizing innate immunity. Larvae are easy to handle in host-pathogen assays. We undertook proteomics research in order to understand immune response in a heterologous host when challenged with microconidia of Fusarium oxysporum. The aim of this study was to investigate hemolymph proteins that were differentially expressed between control and immunized larvae sets, tested with F. oxysporum at two temperatures. The iTRAQ approach allowed us to observe the effects of immune challenges in a lucid and robust manner, identifying more than 50 proteins, 17 of them probably involved in the immune response. Changes in protein expression were statistically significant, especially when temperature was increased because this was notoriously affected by F. oxysporum 104 or 106 microconidia/mL. Some proteins were up-regulated upon immune fungal microconidia challenge when temperature changed from 25 to 37°C. After analysis of identified proteins by bioinformatics and meta-analysis, results revealed that they were involved in transport, immune response, storage, oxide-reduction and catabolism: 20 from G. mellonella, 20 from the Lepidoptera species and 19 spread across bacteria, protista, fungi and animal species. Among these, 13 proteins and 2 peptides were examined for their immune expression, and the hypothetical 3D structures of 2 well-known proteins, unannotated for G. mellonella, i.e., actin and CREBP, were resolved using peptides matched with Bombyx mori and Danaus plexippus, respectively. The main conclusion in this study was that iTRAQ tool constitutes a consistent method to detect proteins associated with the innate immune system of G. mellonella in response to infection caused by F. oxysporum. In addition, iTRAQ was a reliable quantitative proteomic approach to detect and quantify the expression levels of immune system proteins and peptides, in particular, it was found that 104 microconidia/mL at 37°C over expressed many more proteins than other treatments.  相似文献   

10.
Parasites and pathogens can follow different patterns of infection depending on the host developmental stage or sex. In fact, immune function is energetically costly for hosts and trade‐offs exist between immune defenses and life history traits as growth, development and reproduction and organisms should thus optimize immune defense through their life cycle according to their developmental stage. Identifying the most susceptible target and the most virulent pathogen is particularly important in the case of insect pests, in order to develop effective control strategies targeting the most vulnerable individuals with the most effective control agent. Here, we carried out laboratory tests to identify the most susceptible target of infection by infecting different stages of the red palm weevil Rhynchophorus ferrugineus (larvae, pupae, male, and female adults) with both a generic pathogen, antibiotic‐resistant Gram‐negative bacteria Escherichia coli XL1‐Blue, and two specific strains of entomopathogenic nematodes (EPNs), Steinernema carpocapsae ItS‐CAO1 and Heterorhabditis bacteriophora ItH‐LU1. By evaluating bacterial clearance, host mortality and parasite progeny release, we demonstrate that larvae are more resistant than adults to bacterial challenge and they release less EPNs progeny after infection despite a higher mortality compared to adults. Considering the two EPN strains, S. carpocapsae was more virulent than H. bacteriophora both in terms of host mortality and more abundant progeny released by hosts after death. The outcomes attained with unspecific and specific pathogens provide useful information for a more efficient and sustainable management of this invasive pest.  相似文献   

11.
Predator‐prey interactions are an important evolutionary force affecting the immunity of the prey. Parasitoids and mites pierce the cuticle of their prey, which respond by activating their immune system against predatory attacks. Immunity is a costly function for the organism, as it often competes with other life‐history traits for limited nutrients. We tested whether the expression of antimicrobial peptides (AMP) of the larvae of the greater wax moth Galleria mellonella (L.) (Lepidoptera: Pyralidae) changes as a consequence of insertion of a nylon monofilament, which acts like a synthetic parasite. The treatment was done for larvae grown on a high‐quality vs. a low‐quality diet. The expression of Gloverin and 6‐tox were upregulated in response to the insertion of the nylon monofilament. The expression of 6‐tox, Cecropin‐D, and Gallerimycin were significantly higher in the ‘low‐quality diet’ group than in the ‘high‐quality diet’ group. As food quality seems to affect AMP gene expression in G. mellonella larvae, it should always be controlled for in studies on bacterial and fungal infections in G. mellonella.  相似文献   

12.
13.
Shi H  Zeng H  Yang X  Zhao J  Chen M  Qiu D 《Current microbiology》2012,64(6):604-610
The bacteria Xenorhabdus spp. are entomopathogenic symbionts that can produce several toxic proteins that interfere the immune system of insects. We purified an insecticidal protein from Xenorhabdus ehlersii, and designated it as XeGroEL with an estimated molecular mass of ~58 kDa. Galleria mellonella larva injected with XeGroEL presented prophenoloxidase activation and hemocyte decrease. XeGroEL can kill G. mellonella larva in 48 h with an LD50 of 0.76 ± 0.08 μg/larva. Our results demonstrate that X. ehlersii possesses a toxic XeGroEL protein acting as a potential factor to activate proPO in host insect, which also provides a meaningful hypothesis to understand the interaction between nematode-symbiotic bacteria and host.  相似文献   

14.
Plant‐insect herbivore‐entomopathogen interactions are one of the hot topics in biological control and humoral immunity, and biochemical metabolism are important responses of herbivores to pathogen infection. Entomopathogens are key biocontrol agents of caterpillars, but how plants affect the responses of caterpillars to these organisms is not well understood. We studied hormonal immunity (lysozyme and phenoloxidase activities) and biochemical metabolism (total protein and lipid contents) of Beauveria bassiana‐infected beet armyworm (Spodoptera exigua) larvae that feed on five different host plants (soya bean, Chinese cabbage, edible amaranth, water convolvulus and pepper). Results indicated that plant species differentially affected lysozyme and phenoloxidase activity and lipid content, but had no effect on protein content of pathogen‐infected caterpillars. Both lysozyme and phenoloxidase activities were generally higher in entomopathogen‐infected larvae that feed on edible amaranth or water convolvulus compared with the other three plants from days 1 to 5 after treatment. Plant species did not affect in regular changes during the 5 days in the lipid content of infected or non‐infected caterpillars. Our study reveals that plants fail to affect the biochemical metabolism but plants can mediate the humoral immunity of caterpillars to defend against pathogens. This study provides insight into plant‐mediated effects on the response of herbivores to pathogens.  相似文献   

15.
Pathogens can alter host phenotypes in ways that influence interactions between hosts and other organisms, including insect disease vectors. Such effects have implications for pathogen transmission, as well as host exposure to secondary pathogens, but are not well studied in natural systems, particularly for plant pathogens. Here, we report that the beetle‐transmitted bacterial pathogen Erwinia tracheiphila – which causes a fatal wilt disease – alters the foliar and floral volatile emissions of its host (wild gourd, Cucurbita pepo ssp. texana) in ways that enhance both vector recruitment to infected plants and subsequent dispersal to healthy plants. Moreover, infection by Zucchini yellow mosaic virus (ZYMV), which also occurs at our study sites, reduces floral volatile emissions in a manner that discourages beetle recruitment and therefore likely reduces the exposure of virus‐infected plants to the lethal bacterial pathogen – a finding consistent with our previous observation of dramatically reduced wilt disease incidence in ZYMV‐infected plants.  相似文献   

16.
Most bacterial pathogens enter and exit eukaryotic cells during their journey through the vertebrate host. In order to endure inside a eukaryotic cell, bacterial invaders commonly employ bacterial secretion systems to inject host cells with virulence factors that co‐opt the host's membrane trafficking systems and thereby establish specialised pathogen‐containing vacuoles (PVs) as intracellular niches permissive for microbial growth and survival. To defend against these microbial adversaries hiding inside PVs, host organisms including humans evolved an elaborate cell‐intrinsic armoury of antimicrobial weapons that include noxious gases, antimicrobial peptides, degradative enzymes, and pore‐forming proteins. This impressive defence machinery needs to be accurately delivered to PVs, in order to fight off vacuole‐dwelling pathogens. Here, I discuss recent evidence that the presence of bacterial secretion systems at PVs and the associated destabilisation of PV membranes attract such antimicrobial delivery systems consisting of sugar‐binding galectins as well as dynamin‐like guanylate‐binding proteins (GBPs). I will review recent advances in our understanding of intracellular immune recognition of PVs by galectins and GBPs, discuss how galectins and GBPs control host defence, and highlight important avenues of future research in this exciting area of cell‐autonomous immunity.  相似文献   

17.
The greater wax moth Galleria mellonella has been widely used as a heterologous host for a number of fungal pathogens including Candida albicans and Cryptococcus neoformans. A positive correlation in pathogenicity of these yeasts in this insect model and animal models has been observed. However, very few studies have evaluated the possibility of applying this heterologous insect model to investigate virulence traits of the filamentous fungal pathogen Aspergillus fumigatus, the leading cause of invasive aspergillosis. Here, we have examined the impact of mutations in genes involved in melanin biosynthesis on the pathogenicity of A. fumigatus in the G. mellonella model. Melanization in A. fumigatus confers bluish-grey color to conidia and is a known virulence factor in mammal models. Surprisingly, conidial color mutants in B5233 background that have deletions in the defined six-gene cluster required for DHN-melanin biosynthesis caused enhanced insect mortality compared to the parent strain. To further examine and confirm the relationship between melanization defects and enhanced virulence in the wax moth model, we performed random insertional mutagenesis in the Af293 genetic background to isolate mutants producing altered conidia colors. Strains producing conidia of previously identified colors and of novel colors were isolated. Interestingly, these color mutants displayed a higher level of pathogenicity in the insect model compared to the wild type. Although some of the more virulent color mutants showed increased resistance to hydrogen peroxide, overall phenotypic characterizations including secondary metabolite production, metalloproteinase activity, and germination rate did not reveal a general mechanism accountable for the enhanced virulence of these color mutants observed in the insect model. Our observations indicate instead, that exacerbated immune response of the wax moth induced by increased exposure of PAMPs (pathogen-associated molecular patterns) may cause self-damage that results in increased mortality of larvae infected with the color mutants. The current study underscores the limitations of using this insect model for inferring the pathogenic potential of A. fumigatus strains in mammals, but also points to the importance of understanding the innate immunity of the insect host in providing insights into the pathogenicity level of different fungal strains in this model. Additionally, our observations that melanization defective color mutants demonstrate increased virulence in the insect wax moth, suggest the potential of using melanization defective mutants of native insect fungal pathogens in the biological control of insect populations.  相似文献   

18.
Conidial spores are often used as the infectious agent during insect biocontrol applications of entomopathogenic fungi. Here we show differential virulence of conidia derived from Metarhizium anisopliae strain EAMa 01/58-Su depending upon the solid substrata used for cultivation, where LC50 values differed by up to ~10-fold (5.3×106?4.5×105 conidia/ml) and LT50 values by ~40% (9.8?7.1 d). This fungal strain is also known to secrete proteins that are toxic towards adult Mediterranean fruit flies, Ceratitis capitata, and the Greater wax moth, Galleria mellonella, larvae. In vitro production and intrahemoceol injection using G. mellonella as the host was used to test fractions during purification of the protein toxins, demonstrating that they elicited defence-related responses including melanisation and tissue necrosis. Production of these proteins/peptides along with a number of potential cuticle degrading enzymes was confirmed both in vitro and during the infection process (in vivo). Two-dimensional gel electrophoresis, followed by gel elution and bioassay, was used to identify at least three proteins or peptides (molecular mass=11, 15 and 15 kDa) as mediating the observed insect toxicity. These data demonstrate that in vitro screening for insect toxins can mimic in vivo (i.e. during the infection process) secretion and applies the use of proteomics to invertebrate pathology.  相似文献   

19.
Shifts in microbial strain structure underlie both emergence of new pathogens and shifts in patterns of infection and disease of known agents. Understanding the selective pressures at a population level as well as the mechanisms at the molecular level represent significant gaps in our knowledge regarding microbial epidemiology. Highly antigenically variant pathogens, which are broadly represented among microbial taxa, are most commonly viewed through the mechanistic lens of how they evade immune clearance within the host. However, equally important are mechanisms that allow pathogens to evade immunity at the population level. The selective pressure of immunity at both the level of the individual host and the population is a driver of diversification within a pathogen strain. Using Anaplasma marginale as a model highly antigenically variable bacterial pathogen, we review how immunity selects for genetic diversification in alleles encoding outer membrane proteins both within and among strains. Importantly, genomic comparisons among strains isolated from diverse epidemiological settings elucidates the counterbalancing pressures for diversification and conservation, driven by immune escape and transmission fitness, respectively, and how these shape pathogen strain structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号