首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Anthropogenic disturbances often affect the abundance and diversity of ants (Hymenoptera: Formicidae) but relatively few studies have explored the implications of such changes on the ecosystem services mediated by these insects. Here, we evaluated how the transformation of Cerrado savanna habitats into crop plantations affects the abundance, diversity, and the predatory activity of ants. A survey of the ant faunas foraging above‐ and belowground was performed in six crop and six non‐crop (i.e., native vegetation) sites. Above‐ and belowground rates of ant predation were estimated at these same sites using mealworms, Tenebrio molitor L. (Coleoptera: Tenebrionidae), as baits, simulating crop herbivores. Belowground predation rates were significantly greater in the non‐crop sites, despite the lack of difference in overall abundance and species richness of ants foraging belowground between the crop vs. non‐crop sites. In contrast, we did not detect any significant difference in aboveground predation rates between crop vs. non‐crop sites even though there were significantly more species of ants foraging aboveground in the non‐crop sites. Army ants (subfamily Dorylinae) were the main predatory species belowground, and their abundance was significantly greater in non‐crop sites. In contrast, the main predators aboveground were omnivore ants of the genera Pheidole and Solenopsis, which had similar abundances in the crop and non‐crop sites. Overall, our results indicate that transformation of native Cerrado habitats into crop plantations reduces the abundance of some important predatory species, notably those that forage belowground, and this may negatively affect the potential for ants to provide pest control services in agroecosystems.  相似文献   

2.
Oil palm (Elaies guineensis) plantations are among the fastest growing agroecosystems in the Neotropics, but little is known about how Neotropical birds use oil palm habitats. To better understand the potential value of oil palm as an overwintering habitat for migratory birds, we surveyed birds in oil palm and native forest remnants in Tabasco, Mexico, from 19 December 2017 to 27 March 2018. We collected data on bird abundance and vegetative structure and used generalized linear models and multivariate analysis to assess how oil palm development influenced migrant bird diversity, community assemblages, and abundance. We found that species richness of migratory birds tended to be higher in forest patches than in oil palm, that community assemblages of migratory birds differed between native forest and oil palm plantations, and that differences in migratory bird abundance, and subsequent changes in community assemblages were driven by differences between native forest and oil palm plantations in vegetative structure. The bird community of native forest was characterized by migrant species sensitive to forest loss that forage low in the understory and in the leaf litter, whereas the bird community of oil palm plantations was represented by generalist species that occupy a wider range of foraging niches. Our results suggest that most species of migrant birds responded positively to several forest structural features and that integrating more native trees and increasing the amount of understory vegetation in oil palm plantations may increase the value of working landscapes for migratory birds.  相似文献   

3.
Oil palm is one of the most rapidly expanding crops throughout the tropics, yet little is known about its impacts on Neotropical invertebrate biodiversity. Responses of insect assemblages to land conversion may substantially vary among taxa. We assessed geometrid and arctiine moth assemblages in a Costa Rican human dominated landscape, where oil palm plantations are now the second most common land cover. Moths were sampled during 6 months with automatic traps in the interior and margin of old-growth forests, young secondary forests and oil palm plantations in a 30 km2 area. Our results show that richness and diversity of both taxa were severely reduced in oil palm compared to all other habitats. Geometrid abundance was highest in forest interiors and lowest in oil palm, while arctiine numbers did not differ between habitats. Dominance was highest in oil palm plantations, where one arctiine species and one geometrid species accounted for over 40% of total abundance in each of their respective taxa. Species composition was distinct in oil palm and forest interior sites, and depicted a gradient of habitat disturbance in ordination space that was strongly related to vegetation diversity and structure. This study demonstrates that oil palm plantations are not a suitable habitat for these moth taxa. Whilst some arctiine species seem adapted to disturbed habitats, geometrids were more dependent on old-growth forests, showing higher bioindicator potential. In the face of accelerated oil palm expansion, conservation strategies should focus on protecting old-growth forest remnants, as well as increasing species diversity and structural complexity of degraded habitats.  相似文献   

4.
《Journal of Asia》2019,22(3):903-907
The existence of natural habitat around agroecosystem plays a pivotal role in maintaining the presence of natural enemies especially parasitoids. Natural habitat can fail to support biological pest control in agroecosystem due to a particular condition. The objective of this research was to investigate the effect of natural habitat existence on parasitoid wasp communities in oil palm plantation. The ecological research was conducted in the oil palm plantation located in Central Borneo, Indonesia. Twelve plots of oil palm plantations with different habitat characteristics were selected. Insects were sampled using canopy knockdown fogging with a pyrethroid insecticide. In total, 237 species and 2669 individuals of parasitoid wasps belong to 15 families were collected from all research areas. The results showed that species richness and abundance of parasitoid wasps in oil palm plantation was affected by lepidopteran abundance and not by the existence of natural habitat. However, the distance and area of natural habitat influenced the species composition of parasitoid wasps. We concluded that the existence of natural habitat still can maintain the parasitoid wasps in oil palm plantation. Thus, efforts on maintaining parasitoid wasp diversity for management of biological control in oil palm plantation need to pay attention by conserving the natural habitats.  相似文献   

5.
Expansion of oil palm agriculture is currently one of the main drivers of habitat modification in Southeast Asia. Habitat modification can have significant effects on biodiversity, ecosystem function, and interactions between species by altering species abundances or the available resources in an ecosystem. Increasing complexity within modified habitats has the potential to maintain biodiversity and preserve species interactions. We investigated trophic interactions between Argyrodes miniaceus, a cleptoparasitic spider, and its Nephila spp. spider hosts in mature oil palm plantations in Sumatra, Indonesia. A. miniaceus co‐occupy the webs of Nephila spp. females and survive by stealing prey items caught in the web. We examined the effects of experimentally manipulated understory vegetation complexity on the density and abundance of A. miniaceus in Nephila spp. webs. Experimental understory treatments included enhanced complexity, standard complexity, and reduced complexity understory vegetation, which had been established as part of the ongoing Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Project. A. miniaceus density ranged from 14.4 to 31.4 spiders per square meter of web, with significantly lower densities found in reduced vegetation complexity treatments compared with both enhanced and standard treatment plots. A. miniaceus abundance per plot was also significantly lower in reduced complexity than in standard and enhanced complexity plots. Synthesis and applications: Maintenance of understory vegetation complexity contributes to the preservation of spider host–cleptoparasite relationships in oil palm plantations. Understory structural complexity in these simplified agroecosystems therefore helps to support abundant spider populations, a functionally important taxon in agricultural landscapes. In addition, management for more structurally complex agricultural habitats can support more complex trophic interactions in tropical agroecosystems.  相似文献   

6.
7.
Abstract We examined the potential of forest plantations to support communities of forest‐using insects when planted into an area with greatly reduced native forest cover. We surveyed the insect fauna of Eucalyptus globulus (Myrtaceae) plantations and native Eucalyptus marginata dominated remnant woodland in south‐western Australia, comparing edge to interior habitats, and plantations surrounded by a pastoral matrix to plantations adjacent to native remnants. We also surveyed insects in open pasture. Analyses focused on three major insect orders: Coleoptera, Lepidoptera and Hymenoptera. Plantations were found to support many forest‐using insect species, but the fauna had an overall composition that was distinct from the remnant forest. The pasture fauna had more in common with plantations than forest remnants. Insect communities of plantations were different from native forest both because fewer insect species were present, and because they had a few more abundant insect species. Some of the dominant species in plantations were known forestry pests. One pest species (Gonipterus scutellatus) was also very abundant in remnant forest, although it was only recently first recorded in Western Australia. It may be that plantation forestry provided an ecological bridge that facilitated invasion of the native forest by this nonendemic pest species. Plantation communities had more leaf‐feeding moths and beetles than remnant forests. Plantations also had fewer ants, bees, evanioid wasps and predatory canopy beetles than remnants, but predatory beetles were more common in the understory of plantations than remnants. Use of broad spectrum insecticides in plantations might limit the ability of these natural enemies to regulate herbivore populations. There were only weak indications of differences in composition of the fauna at habitat edges and no consistent differences between the fauna of plantations adjacent to remnant vegetation and those surrounded by agriculture, suggesting that there is little scope for managing biodiversity outcomes by choosing different edge to interior ratios or by locating plantations near or far from remnants.  相似文献   

8.
Parasitoid wasps (Hymenoptera) play a significant role in reducing the pest population of the bagworm species Metisa plana. This study presents the abundance and DNA barcoding information of eight parasitoid wasps species, Dolichogenidea metesae (47%), Brachymeria carinata (19%), Buysmania oxymora (12%), Goryphus bunoh (7%), Pediobius anomalus (5%), Eupelmus cotoxanthae (2%), Apanteles aluella (5%), Apanteles sp.1 (3%) and that emerged from M. plana collected from three highly infested oil palm plantations in Selangor (west), Perak (north) and Johor (south) in Peninsular Malaysia. Samples of infested M. plana were collected from the field and reared in a rearing room. The parasitoid wasp species D. metesae recorded the highest emergence numbers and the broadest presence in all the sampling sites. The relationships among the parasitoids species were estimated and visualized using Neighbor Joining (NJ) phylogenetic analyses with the Ceraphronidae family as an outgroup. The resulting NJ tree showed that the identified parasitoid wasps were successfully classified into specific species and supported with bootstraps values between 55% to 100%. This study provides important information on potential biological control agents for M. plana that may be useful for the Malaysian oil palm industry.  相似文献   

9.
Recent expansion of oil palm agriculture has resulted in loss of forest habitat and forest-dependent species. However, large numbers of species—particularly insects—can persist within plantations. This study focuses on Odonata (dragonflies and damselflies): a charismatic indicator taxon and a potentially valuable pest control agent. We surveyed adult Odonata populations biannually over three years within an industrial oil palm plantation in Sumatra, Indonesia. We assessed the effects of rainfall (including an El Niño Southern Oscillation-associated drought), the role of roadside ditches, and the importance of understory vegetation on Odonata populations. To assess the impacts of vegetation, we took advantage of a long-term vegetation management experiment that is part of the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme. We found 41 Odonata species, and communities varied between plantation core and roadside edge microhabitats, and between seasons. Abundance was significantly related to rainfall levels four months before surveys, probably indicating the importance of high water levels in roadside ditches for successful larval development. We found no significant effect of the BEFTA understory vegetation treatments on Odonata abundance, and only limited effects on community composition, suggesting that local understory vegetation structure plays a relatively unimportant role in determining communities. Our findings highlight that there are large numbers of Odonata species present within oil palm plantations and suggest that their abundance could potentially be increased by maintaining or establishing waterbodies. As Odonata are predators, this could bring pest control benefits, in addition to enhancing biodiversity within intensive agricultural landscapes.  相似文献   

10.
11.
The aim of this research is to assess the effects of oil palm plantations on stream habitat and their fish assemblage diversity. We hypothesize that streams which drain through oil palm plantations tend to be less heterogeneous, limiting the occurrence of many species, than streams that drain through forest fragments, which support higher fish diversity. A total of 17 streams were sampled; eight in forest fragments and nine in oil palm plantations. Environmental and biological variables were sampled along 150 m stretch in each stream. Of the 242 environmental variables measured, ten were considered important to assess the condition of structural habitat, and out of these variables, four were considered relevant in the distinction between streams in oil palm plantations and forest fragments. A total of 7245 fishes were collected, belonging to 63 species. Unlike our original hypothesis, the species richness did not differ between forest fragment and oil palm plantations streams, showing that it is not a good divert measure in streams disturbance assessment. However, fish assemblages differed in species composition, and 56 species were recorded in oil palm plantation streams, while 44 species were recorded in forest fragments streams. Some species were identified as indicators of either altered (Aequidens tetramerus and Apistogramma agassizii) or undisturbed areas (Helogenes marmoratus). Overall, oil palm plantations were proven to change stream habitat structure and fish species distribution, corroborating other studies that have evidenced changes in patterns of biological community structure due to impacts by different land uses.  相似文献   

12.
Two rice bug species, Stenotus rubrovittatus (Matsumura) and Trigonotylus caelestialium (Kirkaldy) (Hemiptera: Miridae), are major rice pests in Japan. The populations of these insects are maintained by widely distributed host plants and by a broad range of movements among resource patches. To develop an effective pest management strategy for a region where two rice bug species coexist, the impacts of the surrounding landscape and of weed-infested field boundaries on the field abundances of the two rice bug species were compared. Field abundances of the two species were estimated using the sweep-netting technique. The number of weed-infested field boundaries was also counted within a 100 m radius around 14 study paddies at three sites in Japan. The distinctive features of the surrounding landscape furnished the best predictor at a spatial scale radius of 300 m for S. rubrovittatus and at 200–300 m for T. caelestialium. The abundances of both species increased as the amounts of weed-infested area and reclaimed land increased. The size and number of sources also affected the two rice bug species. These results emphasize that adequate field boundary management can reduce the risk of high pest abundance in the fields, even when an extensive weed-infested area exists within the functional scale of the species.  相似文献   

13.
Land use change impact species richness and functional diversity (FD). In the Brazilian Amazon, we examined the impacts of oil palm plantations on orchid bee (Apidae: Euglossini) species using abundance and FD. We collected male orchid bees in oil palm plantation (PALM), legal reserves (LR), and riparian corridors (APP), and then we used morphological and life-history traits to characterize each species. We evaluated differences in bee body size by comparing intertegular span values. We tested the influence of habitat on taxonomic and functional parameters of orchid bees by applying a partial redundancy analysis (pRDA). We contrasted FD by calculating species richness, functional richness, and functional dispersion. We sampled 1176 bees from 30 species in 18 sampling days across 2015 and 2016. Males from PALM were 13.6% bigger than those in LR areas, and bees from APP showed a similar pattern compared to LR and PALM. Less than 15% of the variation in species composition was related to the distance among sampling sites, and 8% was due to habitat structure. In our pRDA, the spatial difference explained 6% of the variation in orchid bee traits, but there were no effects of habitat parameters upon FD. FD was reduced with land use change caused by oil palm plantations. Our findings support the belief that many bees are impacted by cultivated lands. Nevertheless, the functional similarity between LRs and APPs reflects common structural elements between them, although we did not find significant relationship between functional composition and habitat structure that we evaluated.  相似文献   

14.
Oil palm cultivation is expanding rapidly into many of the world's most biodiverse tropical regions. One of the most functionally important and ecologically dominant animal groups in these environments is the ants. Here, we quantify the overall impacts of clear-felling lowland dipterocarp rainforest and conversion into oil palm plantation on ant diversity. At study sites in Sabah, Malaysia we collected ants from three microhabitats: 1 – the canopy, 2 – bird's nest ferns (Asplenium nidus complex, a common epiphyte in forest and oil palm), and 3 – leaf litter. We also measured temperature, humidity and light at collection sites to assess their impacts on ant community composition. Total ant species richness decreased from 309 to 110 (?64%) between forest and oil palm plantation. However, this impact was not the same across all microhabitats, with bird's nest ferns maintaining almost the same number of ant species in oil palm compared to forest (forest-oil palm, ferns: 36–35 (3% loss), canopy: 120–58 (52% loss), leaf litter: 216–56 (74% loss)). Relative abundance distributions remained the same for fern-dwelling ants, but became less even for oil palm ants in both the canopy and the leaf litter. These differences may be due in part to the ability of bird's nest ferns to provide a stable microclimate in hot, dry plantations. We also found that non-native ant species were more abundant in oil palm than in forest, and few forest ant species survived in plantations in any of the microhabitats. Only 59 of the 309 forest species persisted in oil palm plantations, corresponding to an 81% loss of forest species resulting from habitat conversion. Although oil palm supports many more ant species than has been previously reported, converting forest into plantation still leads to a dramatic reduction in species richness. The maintenance of forested areas is therefore vital for the conservation of ant biodiversity.  相似文献   

15.
Clearance of tropical forest for agricultural purposes is generally assumed to seriously threaten the survival of forest species. In this study, we quantified the conservation value, for forest bird species, of three degraded habitat types in Peninsular Malaysia, namely rubber tree plantations, oil palm plantations, and open areas. We surveyed these degraded habitats using point counts to estimate their forest bird species richness and abundance. We assessed whether richness, abundance, and activities of different avian dietary groups (i.e. insectivores and frugivores) varied among the habitats. We identified the critical habitat elements that accounted for the distribution of forest avifauna in these degraded habitats. Our results showed that these habitats harboured a moderate fraction of forest avifauna (approximately 46–76 species) and their functions were complementary (i.e. rubber tree plantations for moving; open habitats for perching; shrubs in oil palm plantations for foraging). In terms of species richness and abundance, rubber tree plantations were more important than oil palm plantations and open habitats. The relatively high species richness of this agricultural landscape was partly due to the contiguity of our study areas with extensive forest areas. Forecasts of forest-species presence under various canopy cover scenarios suggest that leaving isolated trees among non-arboreal crops could greatly attract relatively tolerant species that require tree canopy. The conservation value of degraded habitats in agricultural landscapes seems to depend on factors such as the type of crops planted and distance to primary forest remnants.  相似文献   

16.
Microclimate and habitat heterogeneity through the oil palm lifecycle   总被引:1,自引:0,他引:1  
The rapid expansion of oil palm cultivation and corresponding deforestation has invoked widespread concern for biodiversity in Southeast Asia and throughout the tropics. However, no study explicitly addresses how habitat characteristics change when (1) forest is converted to oil palm, or (2) through the dynamic 25–30-year oil palm lifecycle. These two questions are fundamental to understanding how biodiversity will be impacted by oil palm development.Our results from a chronosequence study on microclimate and vegetation structure in oil palm plantations surrounding the Pasoh Forest Reserve, Peninsular Malaysia, show dramatic habitat changes when forest is converted to oil palm. However, they also reveal substantial habitat heterogeneity throughout the plantation lifecycle. Oil palm plantations are created by clear-cutting forests and then terracing the land. This reduces the 25 m-tall forest canopy to bare ground with a harsh microclimate. Eight-year-old oil palm plantations had 4 m open-canopies; 22-year-old plantations had 13 m closed-canopies. Old plantations had significantly more buffered microclimates than young plantations. Understory vegetation was twice as tall in young plantations, but leaf litter depth and total epiphyte abundance were double in old plantations. Nonetheless, leaf litter coverage was patchy throughout the oil palm life cycle due to the stacking of all palm fronds. Overall, oil palm plantations were substantially hotter (+2.84 °C) and drier (+0.80 hPa vapor pressure deficit), than forests during diurnal hours. However, there were no nocturnal microclimate differences between forests and plantations. Finally, we describe how the variable retention of old palm trees during crop rotation can retain habitat features and maintain more stable microclimate conditions than clear-cutting senescent plantations. We discuss the implications of habitat changes for biodiversity and introduce three methods to utilize temporal habitat heterogeneity to enhance the quality of the oil palm landscape matrix.  相似文献   

17.
Question: Vascular epiphytes and hemiepiphytes (E/HE) in neotropical forests account for a large fraction of plant richness, but little is known of how the interplay between phorophyte architectural characteristics and habitat perturbation affect communities of E/HE. Location: Sabal mexicana forests in a coastal area of Veracruz, Mexico. Methods: We compared communities of E/HE on phorophytes with different architectural characteristics – the palm S. mexicana and non‐palm phorophytes – in three environments: conserved sites, perturbed sites and small regenerated forest fragments. We combined traditional (abundance, species richness, similarity and complementarity indices) and more recent (phylogenetic diversity) metrics to describe the communities of E/HE. Results: Overall, we recorded 924 E/HE individuals (nine families, 16 genera and 21 species). The abundance and species richness of E/HE was higher on palms than on non‐palm phorophytes. Abundance‐based complementarities between phorophytes and sites were high. We detected clear changes in community structure of E/HE with habitat perturbation, but there were no effects on the phylogenetic diversity of the E/HE community. Palm phorophytes hosted a more phylogenetically diverse community of E/HE than did non‐palm phorophytes. Conclusions: Palm phorophytes are key elements supporting the conservation of resilient communities of E/HE in S. mexicana forest. Habitat fragmentation has a strong effect on the structure of the E/HE community in S. mexicana forests. Ferns are the group of epiphytes most severely affected by habitat perturbation, but we detected no significant effect on the phylogenetic diversity of the community.  相似文献   

18.
In Southeast Asia, the conversion of native forests to oil palm plantations threatens tropical biodiversity, but very little is known about the impacts of oil palm cultivation on small carnivore species. To determine the diversity and occupancy of small carnivores within oil palm plantations and to investigate possible factors that might affect their presence within oil palm, we used camera-traps within two oil palm plantations in central Sumatra, analysed the data using occupancy modelling and tested whether two covariates (distance to the edge of the oil palm habitat and distance from extensive areas of lowland forest) affected the model parameters for each small carnivore species. From 3164 camera-trap days, we detected only three small carnivores: leopard cat (Prionailurus bengalensis), common palm civet (Paradoxurus hermaphroditus) and Malay civet (Viverra tangalunga), which indicates that there was a low diversity of small carnivores within the oil palm plantations. Both the leopard cat and common palm civet were found deep within the oil palm, whereas the Malay civet was only detected near the edge in one of the plantations. The leopard cat and common palm civet had very high occupancy values, whereas the Malay civet had low values for both occupancy and detection probability. Neither covariate affected occupancy of the leopard cat and common palm civet, but distance from the edge of the oil palm habitat did influence their detection probabilities. Malay civet occupancy decreased with distance from the oil palm edge, and detection probability was affected by distance from extensive areas of lowland forest. Forests and rest/den site availability are suggested to be important features for small carnivores with oil palm-dominated landscapes.  相似文献   

19.
Conversion of natural habitats to oil palm agriculture has caused declines in biodiversity and changes in ecosystem functions. To preserve biodiversity we must protect natural habitats, but once oil palm plantations are established, developing more-environmentally friendly management strategies could support higher levels of within-plantation biodiversity and boost the delivery of ecosystem services, possibly increasing oil palm productivity. In this study, we use a before-after control-impact (BACI) experiment to test whether three understory vegetation management strategies affect spider abundance, species richness, and species-level community composition in canopy and ground microhabitats in mature oil palm plantations. Our treatments encompassed the range of current management practices and included heavy applications of herbicides to eliminate all understory vegetation, maintaining some understory vegetation using business-as-usual herbicide applications, and enhancing understory vegetation by not applying any herbicides. We focussed on spiders, as they are both biologically and economically important in oil palm plantations, owing to their important pest control services. We identified more than 1000 spiders, representing 20 families and 83 morphospecies. The treatments did not affect any aspects of spider biodiversity, although the abundance and species richness of canopy-dwelling spiders changed between pre- and post-treatment sample periods, independent of treatment. Our findings indicate that differences in understory vegetation management practices do not affect spiders, or the pest management services that they provide, in mature oil palm plantations. As such, more extreme changes in management would probably be required to enhance spider biodiversity in oil palm plantations in the long-term. Further studies are needed to determine the practicalities of such approaches, to assess how changes in vegetation management practices affect spiders in additional microhabitats, and how the impacts of such approaches vary across the 20–30 year oil palm commercial life cycle.  相似文献   

20.
Dietzsch AC  Stanley DA  Stout JC 《Oecologia》2011,167(2):469-479
One major characteristic of invasive alien species is their occurrence at high abundances in their new habitat. Flowering invasive plant species that are visited by native insects and overlap with native plant species in their pollinators may facilitate or disrupt native flower visitation and fertilisation by forming large, dense populations with high numbers of flowers and copious rewards. We investigated the direction of such a proposed effect for the alien invasive Rhododendron ponticum in Irish habitats. Flower visitation, conspecific and alien pollen deposition, fruit and seed set were measured in a self-compatible native focal plant, Digitalis purpurea, and compared between field sites that contained different relative abundances of R. ponticum. Flower visitation was significantly lower at higher alien relative plant abundances than at lower abundances or in the absence of the alien. Native flowers experienced a significant decrease in conspecific pollen deposition with increasing alien abundance. Heterospecific pollen transfer was very low in all field sites but increased significantly with increasing relative R. ponticum abundance. However, lower flower visitation and lower conspecific pollen transfer did not alter reproductive success of D. purpurea. Our study shows that indirect interactions between alien and native plants for pollination can be modified by population characteristics (such as relative abundance) in a similar way as interactions among native plant species. In D. purpurea, only certain aspects of pollination and reproduction were affected by high alien abundances which is probably a result of high resilience due to a self-compatible breeding system. Native species that are more susceptible to pollen limitation are more likely to experience fitness disadvantages in habitats with high relative alien plant abundances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号