首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The conformational properties of the oligosaccharide chain of GM1 ganglioside containingN-glycolyl-neuraminic acid, -Gal-(1-3)--GalNAc-(1-4)-[-Neu5Gc-(2-3)]--Gal-(1-4)--Glc-(1-1)-Cer, were studied through NMR nuclear Overhauser effect investigations on the monomeric ganglioside in dimethylsulfoxide, and on mixed micelles of ganglioside and dodecylphosphocholine in water. Several interresidual contacts for the trisaccharide core--GalNAc-(1-4)-[-Neu5Gc-(2-3)]--Gal-were found to fix the relative orientitation of the three saccharides, while the glycosidic linkage of the terminal -Gal-was found to be quite mobile as the -Gal-(1-3)--GalNAc-disaccharide exists in different conformations. These results are similar to those found for two GM1 gangliosides containingN-acetyl-neuraminic acid and neuraminic acid [1].Abbreviations Ganglioside nomenclature is in accordance with Svennerholm [23] and the IUPAC-IUB Recommendations [24] GM3(Neu5Ac) II3Neu5AcLacCer, -Neu5Ac-(2-3)--Gal-(1-4)--Glc-(1-1)-Cer - GM3(Neu5Gc) II3Neu5GcLacCer, -Neu5Gc-(2-3)--Gal-(1-4)--Glc-(1-1)-Cer - GM1(Neu5Ac) II3Neu5AcGgOse4Cer, -Gal-(1-3)--GalNAc-(1-4)-[-Neu5Ac-(2-3)]--Gal-(1-4)--Glc-(1-1)-Cer - GM1(Neu5Gc) II3Neu5GcGgOse4Cer, -Gal-(1-3)--GalNAc-(1-4)-[-Neu5Gc-(2-3)]--Gal-(1-4)--Glc-(1-1)-Cer - GM1(Neu) II3NeuGgOse4Cer, -Gal-(1-3)--GalNAc-(1-4)-[-Neu-(2-3)]--Glc-(1-1)-Cer - GD1a IV3Neu5AcII3Neu5AcGgOse4Cer, -Neu5Ac-(2-3)--Gal-(1-3)--GalNAc-(1-4)-[-Neu5Ac-(2-3)]--Gal-(1-4)--Glc-(1-1)-Cer - GalNAc-GD1a IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer, -GalNAc-(1-4)-[-Neu5Ac-(2-3)]--Gal-(1-3)--GalNAc-(1-4)-[-Neu5Ac-(2-3)]--Gal-(1-4)--Glc-(1-1)-Cer - Neu neuraminic acid - Neu5Ac N-acetyl-neuraminic acid - Neu5Gc N-glycolyl-neuraminic acid - Cer ceramide  相似文献   

2.
In this study, we investigate the effects of endothelin-1 (ET-1) and insulin on the cellular activity of protein kinase FA/glycogen synthase kinase-3 (kinase FA/GSK-3) in rat adipocytes. The cellular activity of kinase FA/GSK-3 is inhibited to 50% of control within 30 min when cells are treated with 1 nM ET-1 at 37°C; in addition, significant inhibition to 60% of control is observed at as low as 1 pM ET-1. Conversely, ET-1 at concentrations up to 1 nM has no direct effect on purified kinase FA/GSK-3 in vitro. Immunoblotting analysis further reveals that the protein level of this kinase is not significantly changed when treated with 1 nM ET-1 for 30 min. Similar to ET-1, insulin as low as 10 nM can also induce inactivation of kinase FA/GSK-3 to 50% of control in adipocytes when processed under identical conditions. Most importantly, when treated with both insulin and ET-1, the activity of kinase FA/GSK-3 can be decreased only to 50% of control. Taken together, the results provide initial evidence that ET-1 and insulin may regulate this important multisubstrate/multifunctional protein kinase in a common signaling pathway in cells.  相似文献   

3.
Variation of seed -amylase inhibitors was investigated in 1 154 cultivated and 726 non-cultivated (wild and weedy) accessions of the common bean, Phaseolus vulgaris L. Four -amylase inhibitor types were recognized based on the inhibtion by seed extracts of the activities of porcine pancreatic -amylase and larval -amylase and larval -amylase of the Mexican bean weevil, Zabrotes subfasciatus Boheman. Of the 1 880 accessions examined most (1 734) were able to inhibit porcine pancreatic -amylase activity, but were inactive against the Z. subfasciatus larval -amylase; 41 inhibited only the larval -amylase activity, 52 inhibited the activities of the two -amylases, and 53 did not inhibit the activity of either of the -amylases. The four different inhibitor types were designated as AI-1, AI2, AI-3, and AI-0, respectively. These four inhibitor types were identified by the banding patterns of seed glycoproteins in the range of 14–20 kDa by using SDSpolyacrylamide gel electrophoresis. Additionally, four different banding patterns were recognized in accessions with AI-1, and were designated as AI-1a, 1b, 1c, and 1d. Two different patterns of the accessions lacking an -amylase inhibitory activity were identified and designated as AI-0a and AI-0b. The largest diversity for seed -amylase inhibitors was observed in non-cultivated accessions collected from Mexico where all eight inhibitor types were detected. The possible relationships between the variation of seed -amylase inhibitors and bruchid resistance are discussed.  相似文献   

4.
The synthesis of the methyl - and -N-dansyl-d-galactosaminides is described using methyl ,-2-azido-2-deoxy-d-galactopyranoside as starting material. This was reduced to the corresponding methyl ,-2-amino-2-deoxy-d-galactopyranoside and then treated with dansyl chloride to yield a mixture of methyl ,-N-dansyl-d-galactosaminides which was separated into individual anomeric forms by flash chromatography on silica gel. Methyl -N-dansyl-d-galactosaminide was used as a fluorescent indicator ligand in continuous substitution titrations to determine the association constants of nonchromophoric carbohydrates with theN-acetyl-d-galactosamine specific lectin fromErythrina corallodendron.Abbreviations ECorL Erythrina corallodendron lectin - MeGalNDns methyl 2-deoxy-2-(5-dimethylamino-1-naphthalenesulfamido)--d-galactopyranoside - MeGalNDns methyl 2-deoxy-2-(5-dimethylamino-1-naphthalenesulfamido)--d-galactopyranoside Dedicated to Hilde De Boeck (1958–1991).  相似文献   

5.
Ten previously unreported oligosaccharides have been purified from the urines of human subjects using a combination of gel filtration, ion exchange, and thin-layer chromatographies. Their structures were determined by direct probe mass spectrometry, methylation analysis, and proton NMR spectroscopy of the permethylated oligosaccharide alditols.On the basis of composition, the oligosaccharides could be divided into three groups. Five oligosaccharides containing glycerol were characterized as glucosyl1-1glycerol; glucosyl1-1glycerol; galactosyl1-1glycerol; glucosyl-1-1(fucosyl-1-2)glycerol and/or fucosyl-1-1(glucosyl-1-2)glycerol; and glucosyl-1-1(galactosyl-1-2)glycerol or galactosyl-1-1(glucosyl-1-2)glycerol. Four inositol-containing oligosaccharides were characterized as galactosyl1 (fucosyl1)inositol,N-acetylgalactosaminyl1 (fucosyl1)inositol, fucosyl1-2galactosyl1 (N-acetylgalactosaminyl1)inositol and fucosyl1-2galactosyl1-4-N-acetylglucosaminyl1(N-acetylgalactosaminyl1)inositol. Finally, galactosyl1-3(fucosyl1-2)galactosyl1-6galactosyl1-4(fucosyl1-3)glucose, an oligosaccharide with glucose at its reducing end, was tentatively identified. The significance and possible origins of the carbohydrate structures are discussed.  相似文献   

6.
The effects of 2-deoxyglucose (2-DOG), -methylglucoside (-MG), and glucosamine (GA) on aflatoxin production by Aspergillus parasiticus were studied using conidia-initiated and replacement cultures. In conidia-initiated, 2-DOG, -MG, and GA supported varying amounts of growth when employed as sole carbon sources. In both conidia-initiated and replacement cultures, 2-DOG, but not -MG nor GA, as sole carbon sources support toxin formation. None of the compounds inhibited aflatoxin production when used in combination with glucose. It appears that neither 2-DOG, -MG, nor GA can be considered nonmetabolizable analogs of glucose in A. parasiticus.Abbreviations YES yeast extract sucrose - PMS peptone-mineral salts - 2-DOG L-deoxyglucose - -MG -methylglucoside - GA glucosamine  相似文献   

7.
The primary structure of adult marmoset hemoglobin has been determined. The - and -chains of HbA were separated on a CM23 column in 8 M urea using a sodium phosphate gradient. Tryptic digests of the - and -chains were fractionated on a Dowex 50W-X2 column using a pH and pyridine acetate gradient. Large peptide fragments were obtained by the cyanogen bromide cleavage of the - and -chains, as well as by tryptic digestion of the maleylated - and -chains. The sequence was derived from the amino acid compositions and sequences of the individual tryptic peptide, automated sequence determination of intact - and -chains, as well as automated sequence determination of cyanogen bromide fragments and tryptic maleylated peptides derived from the - and -chains. The complete structure of marmoset adult hemoglobin is closely homologous to that of other primate hemoglobins. The sequence of the marmoset -chain differs from the -chain of human HbA at positions 8, 19, 23, 68, and 116. The -chain from marmoset HbA differs from the -chain of human HbA at positions 5, 13, 21, 50, 87, and 125.This work was supported in part by funds from a Physicians' Medical Education and Research Foundation Grant of the University of Tennessee Memorial Research Hospital and by NIH General Research Support Grant FR-5541 to the institution.  相似文献   

8.
For the structural analysis of the carbohydrate chains ofN-,O-glycoproteins a straightforward strategy was developed based on the cleavage of theN-linked chains with immobilized peptide-N 4-(N-acetyl--glucosaminyl) asparagine amidase-F (PN-Gase-F) fromFlavobacterium meningosepticum, followed by alkaline borohydride treatment of the remainingO-glycoprotein material. This methodology was applied to the isolation of the Asn- and Ser-linked carbohydrate chains of human chorionic gonadotrophin. The structures of the isolated oligosaccharides were verified by 500-MHz1H-NMR spectroscopy. The Asn-linked sugar chains were shown to be: NeuAc2-3Gal1-4GlcNAc1-2Man1-6[NeuAc2-3Gal1-4GlcNAc1-2Man1-3]Man 1-4GlcNAc1-4[Fuc1-6]0-1GlcNAc and Man1-6[NeuAc2-3Gal1-4GlcNAc1-2Man 1-3]Man1-4GlcNAc1-4GlcNAc. Also some minor constituents occurred. The structures of the Ser-linked oligosaccharides were established in the form of their oligosaccharide-alditols as: NeuAc2-3Gal1-3[NeuAc2-6]GalNAc, NeuAc2-3Gal 1-3GalNAc and NeuAc2-3Gal1-3[NeuAc2-3Gal1-4GlcNAc1-6]GalNAc.Abbreviations hCG human chorionic gonadotrophin - hCG- -subunit - hCG- -subunit - ElA enzyme immunoassay - PNGase-F peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase-F (EC 3.5.1.52) - SDS sodium dodecyl sulphate - GalNAc N-acetylgalactosamine - GlcNAc N-acetylglucosamine - NeuAc N-acetylneuraminic acid - Man mannose - Gal galactose - Fuc fucose  相似文献   

9.
Neurosteroids are endogenous Central Nervous System (CNS) compounds which act mainly by allosteric modulation of the GABAA receptor complex. The presence of a 3-hydroxyl group and a 5-hydrogen atom have been found to be essential structural requirements for biological activity in mammals. In the present work we report the enhancing activity on [3H]GABA binding to its receptor sites in chick optic lobe produced by progesterone metabolites 3-hydroxy,5-pregnan-20-one (3,5-P) and 3-hydroxy,5-pregnan-20-one (3,5-P). Both steroids were found able to enhance [3H]GABA binding along ontogeny, displaying a similar profile at early developmental stages, while in adulthood 3,5-P had greater potency (EC50 0.22 M) and enhancing effect (Emax: 122%). In adult synaptic membranes, the two compounds displayed a complex interaction with the GABAA receptor, disclosed by a Schild plot with slope below one and an incomplete displacement of 3,5-P by its 3,5 isomer. Such complexity could be related to the steroidogenic profile in avian CNS, with 5-reduced progesterone metabolites present since early development, while 3,5-P is found only in adulthood. Bearing in mind differences between avian and mammalian steroidogenic profiles and the relevance of 5-steroids in early avian development, we propose that 3,5-P, instead of the classical potent 3,5-steroids, may be the endogenous modulator of GABAergic activity in developing avian brain.  相似文献   

10.
Ni  Zhang-Lin  Wang  Da-Fu  Wei  Jia-Mian 《Photosynthetica》2002,40(4):517-522
The conserved residue Thr42 of -subunit of the chloroplast ATP synthase of maize (Zea mays L.) was substituted with Cys, Arg, and Ile, respectively, through site-directed mutagenesis. The over-expressed and refolded -proteins were purified by chromatography on DEAE-cellulose and FPLC on mono-Q column, which were as biologically active (inhibiting Ca2+-ATPase activity and blocking proton gate) as the native subunit isolated from chloroplasts. The T42C and T42R showed higher inhibitory activities on the soluble CF1(–) Ca2+-ATPase than the WT. The T42I inhibited the Ca2+-ATPase activity of soluble CF1 and restored photophosphorylation activity of membrane-bound CF1 deficient in the most efficiently. Far-ultraviolet CD spectra showed that the portions of -helix and -sheet structures of the three mutants were somewhat different from WT. Thus the conserved residue Thr42 may be important for maintaining the structure and function of the -subunit and the basic functions of the -subunit as far as an inhibitor of Ca2+-ATPase and the proton gate are related.  相似文献   

11.
Four glycosidases were analyzed in 10 mm apical segments prepared from growing roots (15 mm) of Zea mays L. The pH optima were found to be 5.8 for -glucosidase, 4.4 for -galactosidase, 6.4 for -glucosidase and 6.0 for -galactosidase. The -glucosidase showed 4-fold higher activity than the -galactosidase. The distribution of the -glucosidase activity was signifcantly different from that of the -galactosidase, -glucosidase and -galactosidase.Abbreviations -Glu -glucosidase - -Gal -galactosidase - -Glu -glucosidase - -Gal -galactosidase  相似文献   

12.
Summary In the progeny of a hybrid between monotelosomic line 3B of Chinese Spring wheat and Chinese Spring — Aegilops longissima ditelosomic addition line G a cytologically stable strain was selected consisting of 20 wheat chromosome pairs, one pair of telosomic chromosome 3BL and one pair of telosomic longissima chromosome G. Inoculating Chinese Spring — Aegilops longissima addition and substitution lines with ten different powdery mildew isolates, partial resistance was observed. The infection grade as well as the number of spores/cm2 leaf area were significantly reduced.  相似文献   

13.
UDP-GlcNAc: Man3R 2-N-acetylglucosaminyltransferase I (GlcNAc-T I; EC 2.4.1.101) is the key enzyme in the synthesis of complex and hybrid N-glycans. Rat liver GlcNAc-T I has been purified more than 25,000-fold (M r 42,000). TheV max for the pure enzyme with [Man6(Man3)Man6](Man3)Man4GlcNAc4GlcNAc-Asn as substrate was 4.6 µmol min–1 mg–1. Structural analysis of the enzyme product by proton nuclear magnetic resonance spectroscopy proved that the enzyme adds anN-acetylglucosamine (GlcNAc) residue in 1–2 linkage to the Man3Man-terminus of the substrate. Several derivatives of Man6(Man3)Man-R, a substrate for the enzyme, were synthesized and tested as substrates and inhibitors. An unsubstituted equatorial 4-hydroxyl and an axial 2-hydroxyl on the -linked mannose of Man6(Man3)Man-R are essential for GlcNAc-T I activity. Elimination of the 4-hydroxyl of the 3-linked mannose (Man) of the substrate increases theK M 20-fold. Modifications on the 6-linked mannose or on the core structure affect mainly theK M and to a lesser degree theV max, e.g., substitutions of the Man6 residue at the 2-position by GlcNAc or at the 3- and 6-positions by mannose lower theK M, whereas various other substitutions at the 3-position increase theK M slightly. Man6(Man3)4-O-methyl-Man4GlcNAc was found to be a weak inhibitor of GlcNAc-T I.Abbreviations BSA Bovine serum albumin - Bn benzyl - Fuc, F l-fucose - Gal, G d-galactose - GalNAc, GA N-acetyl-d-galactosamine - Glc d-glucose - GlcNAc, Gn N-acetyl-d-glucosamine - HPLC high performance liquid chromatography - Man, M d-mannose - mco 8-methoxycarbonyl-octyl, (CH2)8 COOOCH3 - Me methyl - MES 2-(N-morpholino)ethanesulfonate - NMR nuclear magnetic resonance - PMSF phenylmethylsulfonylfluoride - pnp p-nitrophenyl - SDS sodium dodecyl sulfate - T transferase - Tal d-talose - Xyl d-xylose; - {0, 2 + F} Man6 (GlcNAc2Man3) Man4GlcNAc4 (Fuc6) GlcNAc - {2, 2} GlcNAc2Man6 (GlcNAc2Man3) Man4GlcNAc4GlcNAc; M5-glycopeptide, Man6 (Man3) Man6 (Man3) Man4 GlcNAc4GlcNAc-Asn Enzymes: GlcNAc-transferase I, EC 2.4.1.101; GlcNAc-transferase II, EC 2.4.1.143; GlcNAc-transferase III, EC 2.4.1.144; GlcNAc-transferase IV, EC 2.4.1.145; GlcNAc-transferase V, UDP-GlcNAc: GlcNAc2 Man6-R (GlcNAc to Man) 6-GlcNAc-transferase; GlcNAc-transferase VI, UDP-GlcNAc: GlcNAc6(GlcNAc2) Man6-R (GlcNAc to Man) 4-GlcNAc-transferase; Core 1 3-Gal-transferase, EC 2.4.1.122; 4-Gal-transferase, EC 2.4.1.38; 3-Gal-transferase, UDP-Gal: GlcNAc-R 3-Gal-transferase; blood group i 3-GlcNAc-transferase, EC 2.4.1.149; blood group I 6-GlcNAc-transferase, UDP-GlcNAc: GlcNAc3Gal-R (GlcNAc to Gal) 6-GlcNAc-transferase.  相似文献   

14.
The complete definition of the chemical structure of GD1b-ganglioside (GD1b) lactone isolated from human brain has been given by means of spectrometric and spectroscopic analyses. GD1h lactone contains a single ester linkage involving the external sialic acid carboxyl group and the C-9 hydroxyl group of the internal sialic acid unit. A synthetic lactone of GD1b prepared treating GD1b with glacial acetic acid characterized in the same way showed an identical chemical structure.Abbreviations: Ganglioside nomenclature is according to Svennerholm [16] and the IUPAC-IUB Recommendations [17] GM1 GM1-ganglioside, II3NeuAc-GgOse4Cer, Gal1-3GalNac1-4[NeuAc2-3]Gal1-4Glc1-1Cer - GD1b GD1b-ganglioside, II3(NeuAc)2GgOse4Cer, Gal1-3GalNAc1-4[NeuAc2-8NeuAc2-3]Gal1-4Glc1-1Cer - GD1b lactone GD1b-L, Gal1-3GalNAc1-4[NeuAc(1-9)2-8NeuAc2-3]Gal1-4Glc1-1Cer - Cer ceramide - FAB-MS fast atom bombardment-mass spectrometry - 1H-NMR proteon nuclear magnetic resonance - 1D-NMR one dimensional NMR - 2D-COSY two dimensional correlated spectroscopy - DMSO-d6 deuterated dimethylsulfoxide  相似文献   

15.
We have investigated the activity of CMP-Neu5Ac:Gal\1-3GalNAc -2,3-sialyltransferase (EC 2.4.99.4) in FR3T3 cells transformed by the Ha-ras oncogene in which we have previously demonstrated the higher expression of the -galactosidase -2,6-sialyltransferase (EC 2.4.99.1) [21]. We demonstrate that the presence of the activatedras gene decreases the activity of this specific -2,3-sialyltransferase fourfold. According to the kinetic parameters and to mixing experiments, we can assume that this decreased enzymatic activity reflects a decrease in the number of activeO-glycan -2,3-sialyltransferase polypeptides inras-transformed cells. However, no change in the binding of Peanut agglutinin was observed on the cell surface ofras-transformed FR3T3 suggesting that no change in the sialylation ofO-glycan core 1 appeared in these cells, although the activity of the -2,3-sialyltransferase was decreased.Abbreviations -2,3-ST(O) CMP-Neu5Ac:Gal1-3GalNAc-R -2,3-sialyltransferase - -2,3-ST(N/O) CMP-Neu5Ac:Gal1-3/4GlcNAc-R -2,3-sialyltransferase - -2,6-ST(N) CMP-Neu5Ac:Gal1-4GlcNAc-R -2,6-sialyltransferase - -2,6-ST(O)I CMP-Neu5Ac:R-GalNAc(1-O)Ser -2,6-sialyltransferase - -2,6-ST(O)II CMP-Neu5Ac:Neu5Ac2-3Gal1-3GalNAc-R -2,6-sialyltransferase - ASFet asialofetuin - FR3T3 Fisher rat fibroblast - FRras Ha-ras-transfected FR3T3 fibroblasts - NaCl/Pi sodium phosphate 10mm, NaCl 0.15m, pH 7.4, buffer - pNp p-nitrophenol  相似文献   

16.
A novel syrup containing neofructo-oligosaccharides was produced from sucrose (Brix 70) by whole cells of Penicillium citrinum. The efficiency of fructo-oligosaccharides production was more than 55% and those of the main carbohydrate components, 1-kestose (Fruf 21Fruf 21 Glc), nystose (Fruf 21Fruf 21 Fruf 21 Glc) and neokestose (Fruf 26 Glc12 Fruf), were 22, 14 and 11%, respectively.  相似文献   

17.
The structure of a new nonasaccharide isolated from human milk has been investigated. By using methylation analysis, FAB-MS and1H-and13C-NMR spectroscopy as basic methods of structural investigation, this oligosaccharide was identified as VI2--Fuc,V4-Fuc,III3--Fuc-p-lacto-n-hexaose: Fuc1-2Gal1-3[Fuc1-4]GlcNAc1-3Gal1-4[Fuc1-3]GlcNAc1-3Gal1-4Glc.Abbreviations COSY correlation spectroscope - DP degree of polymerisation - FAB-MS fast atom bombardment-mass spectrometry - HPLC high performance liquid chromatography - NMR nuclear magnetic resonance - GLC gas-liquid chromatography  相似文献   

18.
The prediction of the secondary structure content (-helix and-strand content) of a globular protein may play an important complementary role in the prediction of the protein's structure. We propose a new prediction algorithm based on Chou's database [Chou (1995),Proteins Struct. Fund Genet. 21, 319]. The new algorithm is an improved multiple linear regression method, taking the nonlinear and coupling terms of the frequencies of different amino acids into account. The prediction is also based on the structural classes of proteins. A resubstitution examination for the algorithm shows that the average errors are 0.040 and 0.033 for the prediction of-helix content and-strand content, respectively. The examination of cross-validation, the jackknife analysis, shows that the average errors are 0.051 and 0.044 for the prediction of-helix content and-strand content, respectively. Both examinations indicate the self-consistency and the extrapolative effectiveness of the new algorithm. Compared with the other methods available currently, our method has the merits of simplicity and convenience for use, as well as a high prediction accuracy. By incorporating the prediction of the structural classes, the only input of our method is the amino acid composition of the protein to be predicted.  相似文献   

19.
Translation elongation factor EF-1 became stably associated with potato tuber polysomes at the onset of hypoxia, coincident with a sharp rise in lactate and decrease in tissue pH. This aberrant association of EF-1 with polysomes also occurred when aerobic tuber extracts were acidified in vitro. Upon resumption of protein synthesis, an increase in the steady-state levels of EF-1, and expression of an EF-1/GUS transgene was observed. These results indicate that translational arrest results from to the failure of EF-1 to dissociate from ribosomes during the elongation cycle, and that restoration of protein synthesis is coordinated with expression of EF-1.  相似文献   

20.
The relative roles of the two structural aspects of nonenzymic glycation sites of hemoglobin A, namely the ease with which the amino groups could form the aldimine adducts and the propensity of the microenvironments of the respective aldimines to facilitate the Amadori rearrangement, in dictating the site selectivity of nonenzymic glycation with aldotriose has been investigated. The chemical reactivity of the amino groups of hemoglobin A forin vitro reductive glycation with aldotriose is distinct from that in the nonreductive mode. The reactivity of amino groups of hemoglobin A toward reductive glycation (i.e., propensity for aldimine formation) decreases in the order Val-1(), Val-1(), Lys-66(), Lys-61(), and Lys-16(). The overall reactivity of hemoglobin A toward nonreductive glycation decreased in the order Lys-16(), Val-1(), Lys-66(), Lys-82(), Lys-61(), and Val-1(). Since the aldimine is the common intermediate for both the reductive and nonreductive modification, the differential selectivity of protein for the two modes of glycation is clearly a reflection of the propensity of the microenvironments of nonenzymic glycation sites to facilitate the isomerization reaction (i.e., Amadori rearrangement). A semiquantitative estimate of this propensity of the microenvironment of the nonenzymic glycation sites has been obtained by comparing the nonreductive (nonenzymic) and reductive modification at individual glycation sites. The microenvironment of Lys-16() is very efficient in facilitating the rearrangement and the relative efficiency decreases in the order Lys-16(), Lys-82(), Lys-66(), Lys-61(), Val-1(), and Val-1(). The propensity of the microenvironment of Lys-16() to facilitate the Amadori rearrangement of the aldimine is about three orders of magnitude higher than that of Val-1() and is about 50 times higher than that of Val-1(). The extent of nonenzymic glycation at the individual sites is modulated by various factors, such as thepH, concentration of aldotriose, and the concentration of the protein. The nucleophiles—such as tris, glycine ethyl ester, and amino guanidine—inhibit the glycation by trapping the aldotriose. The nonenzymic glycation inhibitory power of nucleophile is directly related to its propensity to form aldimine. Thus, the extent of inhibition of nonenzymic glycation at a given site by a nucleophile directly reflects the relative role ofpK a of the site in dictating the glycation at that site. The nonenzymic glycation of an amino group of a protein is an additive/synergestic consequence of the propensity of the site to form aldimine adducts on one hand, and the propensity of its microenvironment to facilitate the isomerization of the aldimines to ketoamines on the other. The isomerization potential of microenvironment plays the dominant role in dictating the site specificity of the nonenzymic glycation of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号