首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The host alternating aphid, Rhopalosiphum padi (L.), feeds in summer on several different species of grasses but is monophagous on its winter host, Prunus padus L. The monophagy on P. padus could be a result of the restricted host range of the several different generations colonizing, or feeding, on this host during autumn–winter–spring. This study shows that the winter host plant specificity of R. padi is controlled mainly by the preference of the females remigrating (gynoparae) to the winter host, P. padus, in autumn. The other generations living on the winter host, i.e., sexual females, males, and spring generations, all accept a broader range of winter hosts. One alternative host plant, Prunus spinosa L., could be utilized by all generations associated with the winter host, except for the females remigrating at autumn.  相似文献   

2.
Effects of elevated CO2 on five plant-aphid interactions   总被引:3,自引:0,他引:3  
We investigated interactions between five species of phloem-feeding aphids (Homoptera: Aphididae) and their host plants at elevated CO2; Acyrthosiphon pisum (Harris) on Vicia faba L., Aphis nerii Boyer de Fonscolombe on Asclepias syriaca L., Aphis oenotherae Oestlund on Oenothera biennis L., Aulacorthum solani (Kaltenbach) on Nicotiana sylvestris Speg. & Comes and Myzus persicae (Sulzer) on Solanum dulcamara L. Host plants grown at elevated CO2 generally had greater biomass, leaf area and C:N ratios than those grown at ambient CO2, while plants with aphids had lower biomass and leaf area than those without aphids.The responses of aphid populations to elevated CO2 were species-specific with one species increasing (M. persicae), one decreasing (A. pisum), and the other three being unaffected. CO2 treatment did not affect the proportion of alate individuals produced. In general, aphid abundance was not significantly related to foliar nitrogen concentration.We performed separate analyses to test whether either aphid presence or aphid abundance modified the response of host plants to elevated CO2. In terms of aphid presence, only three of the potential 15 interactions (five aphid species x three plant traits) were significant; A. solani slightly modified the response of the plant biomass to elevated CO2 and M. persicae affected the response of leaf area and allocation. In terms of aphid abundance, only two of the potential 15 interactions were significant with A. nerii modifying the plant response to CO2 in terms of total leaf area and allocation.We conclude that, in contrast to other insect groups such as leaf chewers, populations of most phloem-feeders may not be negatively affected by increased CO2 concentrations in the future. The reasons for this difference include the possibility that aphids may be able to compensate for changes in host plant quality by altering feeding behaviour or by synthesizing amino acids. In addition, there is little evidence that aphid herbivory, even at high levels, will substantially modify the response of plants to elevated CO2.  相似文献   

3.
The effect of adult experience on in-flight orientation to plant–host complex volatiles byAphidius erviHaliday was studied in a wind tunnel bioassay, usingAcyrthosiphon pisum(Harris), maintained on broad bean plants (Vicia faba) as host. A short oviposition experience (15 s) on the plant–host complex (PHC) was sufficient to induce a drastic decrease of flight propensity and stimulated a foraging behavior characterized by intense walking activity. However, flight activity resumed to normal levels 1 h after the oviposition experience on the PHC occurred. For parasitoids conditioned on the PHC for at least 1 min the recorded proportion making oriented flights to the PHC was significantly higher than that for naive females. In contrast, oviposition experience in the absence of plant material did not influence theA. erviflight response. Oviposition attempts on aphid dummies without egg release did not reduce flight activity. WhenA. ervifemales were exposed to glass beads coated withAc. pisumcornicle secretion, a priming effect was observed, resulting, compared with naive females, in a significantly higher rate of oriented flights to the PHC. In contrast, oviposition attempts visually induced by colored aphid dummies did not influence flight behavior. A strong reaction to volatile cues from uninfested plants was induced by oviposition experience on newly infested broad bean plants. This appears to be a case of associative learning. In fact, uninfested broad bean plants are basically unattractive to naiveA. ervifemales. The results demonstrate that adult experience has a considerable influence onA. ervibehavior and may have important implications for biological control of natural pest aphid populations.  相似文献   

4.
Aphid ecology and population dynamics are affected by a series of factors including behavioural responses to ecologically relevant chemical cues, capacity for population growth, and interactions with host plants and natural enemies. Using the aphid Rhopalosiphum padi (L.) (Homoptera: Aphididae), we showed that these factors were affected by infection with Rhopalosiphum padi virus (RhPV). Uninfected aphids were attracted to odour of uninfected aphids on the host plant, an aggregation mechanism. However, infected aphids were not attracted, and neither infected nor uninfected aphids were attracted to infected aphids on the plant. Infected aphids did not respond to methyl salicylate, a cue denoting host suitability. Infected aphids were more behaviourally sensitive to aphid alarm pheromone, and left the host plant more readily in response to it. RhPV reduced the lifespan and population growth rate of the aphid. The predacious ladybird, Coccinella septempunctata (L.) (Coleoptera: Coccinellidae), consumed more infected aphids than uninfected aphids in a 24‐h period, and the aphid parasitoid Aphidius ervi Haliday (Hymenoptera: Aphidiidae) attacked more infected than uninfected aphids. However, the proportion of mummies formed was lower with infected aphids. The results represent further evidence that associated organisms can affect the behaviour and ecology of their aphid hosts.  相似文献   

5.
Ecological specialisation on different host plants occurs frequently among phytophagous insects and is normally assumed to have a genetic basis. However, insects often carry microbial symbionts, which may play a role in the evolution of specialisation. The bacterium Regiella insecticola is a facultative symbiont of pea aphids (Acyrthosiphon pisum) where it is found most frequently in aphid clones feeding on Trifolium giving rise to the hypothesis that it may improve aphid performance on this plant. A study in which R. insecticola was eliminated from a single naturally infected aphid clone supported the hypothesis, but a second involving two aphid clones did not find the same effect. We created a series of new pea aphid–R. insecticola associations by injecting different strains of bacteria into five aphid clones uninfected by symbionts. For all aphid clones, the bacteria decreased the rate at which aphids accepted Vicia faba as a food plant and reduced performance on this plant. Their effect on aphids given Trifolium pratense was more complex: R. insecticola negatively affected acceptance by all aphid clones, had no effect on the performance of four aphid clones, but increased performance of a fifth, thus demonstrating genetic variation in the effect of R. insecticola on pea aphid host use. We discuss how these results may explain the distribution and frequency of this symbiont across different aphid populations. Julia Ferrari and Claire L. Scarborough contributed equally to the work.  相似文献   

6.
The interactions among host plants(Medicago sativa L., cv. `OKO8' and Vicia faba L., cv. `Windsor'), aphid prey(Acyrthosiphon pisum Harris, Homoptera:Aphididae), and Coccinella septempunctata L. (Coleoptera: Coccinellidae) preimaginal biology were evaluated. Interactions were measured over a range of limiting daily prey levels (1.2 mg–16.4 mg)from each host plant colony. Compared withA. pisum reared on V. faba, A. pisum reared on M. sativa storedsignificantly more fatty acids which resultedin a 1.17-fold increase in available caloriesfor developing C. septempunctata. Theincreased survival, decreased developmentaltimes, and larger size of C.septempunctata supplied with A. pisumreared on M. sativa clearly demonstratehost plant effects at the third trophic level. At low very limiting daily prey levels, A. pisum reared on M. sativa were moresuitable prey for C. septempunctatasurvival, development, and adult size thanA. pisum reared on V. faba. Coccinella septempunctata survival ratios(larval), developmental times, and adult sizeconverged (were not statistically different)between host plants at higher daily A.pisum levels. These convergence's supportthe hypothesis that there were quantitativedifferences in the nutritional value ofaphids, as influenced by differences in fattyacids and subsequent nutritional levels(calories), between aphids reared on separateplant hosts. The observed tritrophicinteractions appear to be modulated by thebiochemical response of A. pisum to hostplants.  相似文献   

7.
It is well known that volatile cues from damaged plants may induce resistance in neighboring plants. Much less is known about the effects of volatile interaction between undamaged plants. In this study, barley plants, Hordeum vulgare cv. Kara, were exposed to volatiles from undamaged plants of barley cv. Alva or thistle Cirsium vulgare, and to the volatile phytochemicals, methyl salicylate or methyl jasmonate. Exposures were made either during natural daylight or darkness. Acceptance of exposed plants by the aphid Rhopalosiphum padi was assessed, as well as the expression of putative marker genes for the different treatments. Aphid acceptance of plants exposed to either barley or C. vulgare was significantly reduced, and an effect of the volatiles from undamaged plants was confirmed by the induction of pathogenesis-related protein, PR1a in exposed plants. However the effect on aphid acceptance was seen only when plants were exposed during darkness, whereas PR1a was induced only after treatment during daylight. Aphid acceptance of plants exposed to either methyl salicylate or methyl jasmonate was significantly reduced, but only when plants were exposed to the chemicals during daylight. AOS2 (allene oxide synthase) was induced by methyl jasmonate and BCI-4 (barley chemical inducible gene-4) by methyl salicylate in both daylight and darkness. It is concluded that (a) the effects on aphids of exposing barley to volatile phytochemicals was influenced by the presence or absence of light and (b) the response of barley to methyl salicylate/methyl jasmonate and to volatiles from undamaged plants differed at the gene and herbivore level.Key Words: methyl jasmonate, methyl salicylate, allelobiosis, barley, PR1, allene oxide synthase, Rhopalosiphum padi, light  相似文献   

8.
Four barley varieties with no significant difference in aphid acceptance were sown in pure stands and in pairwise combinations with varieties side by side in separate rows. Settling tests were done in situ in the field plots with apterae of Rhopalosiphum padi (L.) (Homoptera:Aphididae) and showed that aphid acceptance was changed in some combinations of cultivars. In a laboratory test, in which plants of one cultivar were exposed to air from the other cultivars, aphid acceptance was significantly reduced in three of the four cultivars when treated with air from certain other cultivars. Two of these three cultivars showed the same reduction under field conditions. This supports the hypothesis that plant/plant communication may release responses in neighbouring plants that change aphid host plant acceptance. The results also show that this mechanism is not restricted to optimal growing conditions in the laboratory, although it may be modified under field conditions depending on plant genotype.  相似文献   

9.
Russian wheat aphid,Diuraphis noxia(Mordvilko), as a pest of small grains, has prompted research into biological control and host plant resistance. In the presence of Russian wheat aphid, leaves of a susceptible barley (Morex) are curled and chlorotic and sustain large densities of this aphid, while leaves of a resistant barley (STARS-9301B) remain flat and green and sustain fewer aphids. Might parasitism of Russian wheat aphid byAphelinus albipodusHayat & Fatima andDiaeretiella rapaeMcIntosh be affected differently by these plant types? When presented the plants separately and based on parasitism rate relative to aphid density, the largerD. rapaewas more effective in parasitizing relatively high densities of aphids within curled leaves of Morex than relatively low densities of aphids on uncurled leaves of STARS-9301B. Parasitism byA. albipodusdid not significantly differ among the plants. When given a choice of plants, approximately equal rates of parasitism occurred on the two plant lines for both parasitoid species, and parasitism byD. rapaewas greater thanA. albipodus.These data indicate that using parasitoid size as an indicator of success in a physically restricted environment may be misleading, when considered in a plant environment responsive in several manners to aphids (chlorosis, curling, and ability to sustain Russian wheat aphid). We expect that use of resistant barley will result in decreased parasitoid abundance as aphid densities decrease. However, parasitism rates are expected to be approximately equal on resistant and susceptible barley. In this system, plant resistance and biocontrol are compatible management strategies.  相似文献   

10.
1 Field experiments were performed in barley using volatile semiochemicals affecting population density (density‐related substances – DRS) and spring migration (methyl salicylate) in bird cherry oat aphid Rhopalosiphum padi (L.). Natural infestations of aphids were used, and semiochemical dosages were chosen to be biologically relevant based on previous studies. A simple formulation method for active substances using wax pellets was developed. 2 The effect of treatments on aphid populations was analysed in terms of initial colonization of the crop, temporal dynamics of the population and maximum aphid incidence. 3 Treatments caused a significant delay in aphid establishment in the crop, and reduced the average infestation by 25–50% compared with the untreated control. At a moderate attack rate, the treatments with methyl salicylate and DRS gave a significant reduction in maximum aphid numbers. 4 The significant control effect of the treatment encourages further investigation both to increase understanding of the ecological role of the active substances, and to establish the limitations for their use in plant protection.  相似文献   

11.
Green peach aphid, Myzus persicae (Sulzer), does not overwinter outdoors in Minnesota; it arrives each spring on low-level jet streams from the south. After arrival, anholocylic reproduction occurs on numerous herbaceous species, including many common weeds, before movement to potato, Solanum tuberosum L. In investigating aphid feeding behavior on barrier crops, we observed winter wheat, Triticum aestivum L., colonized by green peach aphid. The Northern Great Plains grows 94,000 ha of potatoes and 20.5 million ha of small grain cereals each year, the latter potentially providing an early emerging and widely distributed green peach aphid host to influence early season potato colonization. Life tables statistics indicated green peach aphid had its highest reproductive potential among cereals on winter wheat, with rye (Secale cereale L.) > barley (Hordeum vulgare L.) > oats (Avena sativa L.). Green peach aphid was found to colonize barley, rye, and winter wheat, but not oats. Mean generation time, net reproductive rate, doubling time, and finite rate of increase were significantly different between host plants. Electrical penetration graph technique indicated mean nonpenetration duration by green peach aphid was significantly different among plant species, and significantly longer on winter wheat than on the other cereals. Mean xylem phase duration was not significantly different among plant species but sieve element salivation was of longest duration on potato. Phloem sap ingestion (E2) was also significantly different among plant species with longest E2 duration on winter wheat. This study demonstrates that this aphid can effectively use key cereals at the vegetative stage.  相似文献   

12.
1. The abundance of insect herbivores is mediated by interactions with higher and lower trophic levels. This research asks (i) how phenological change across trophic levels affects host plant quality and selection for aphids, and (ii) what higher trophic level mechanisms drive aphid abundance. 2. Ligusticum porteri is a perennial host for the sap-feeding aphid Aphis asclepiadis and intraguild mirid predators (chiefly Lygus hesperus) in Colorado. We used long-term observational data to discover that aphids and mirids respond differently to phenological cues. These unique responses can impact aphid abundance through changes to host plant selection and quality. 3. We used behavioural choice assays to assess how advanced mirid phenology influences aphid host plant selection. More alates landed and reproduced on mirid-free control plants relative to host plants with prior mirid feeding. However, this preference did not correlate with aphid performance when we compared aphid relative growth rates between treatments. This suggests that advanced mirid phenology would impact aphid populations more through host plant choice, rather than reductions in host quality. The addition of mirids to experimental aphid colonies also demonstrated reduced aphid colony growth via predation. 4. We measured plant cues involved in host selection and found differences in volatile composition between plants with prior mirid feeding compared to control plants, providing the potential for aphids to detect enemy-free space using volatile cues.  相似文献   

13.
The presence of the exotic Argentine ant, Linepithema humile Mayr (Hymenoptera: Dolichoderinae), nitrogen enrichment, and early-season herbivory by the specialist beetle Trirhabda bacharidis (Coleoptera: Chrysomelidae) have been shown, through separate experiments, to affect the densities of insect herbivores of the coastal shrub Baccharis halimifolia (Asteraceae), in Florida. Using a fully-factorial field experiment, we examined the relative importance of all three of these factors to the six most common insect herbivore species utilizing this host plant in a West Central Florida coastal habitat. The presence of ants affected more herbivore species than either early-season herbivory by larval T. bacharidis or nitrogen enrichment. Experimental reductions of L. humile resulted in reductions of an aphid, its coccinellid predators, and adult T. bacharidis, and increases of two species of leafminers and one species of stemborer. Due to the strong negative effects of stemborer herbivory on host plant survival, the increase in stemborer abundance led to increased host plant mortality. Early-season herbivory by larval T. bacharidis only affected the abundance of aphids and their predators, both of which were more abundant on trees with reduced early-season herbivory. Nitrogen fertilization had the most limited effects and only T. bacharidis larvae achieved higher densities on fertilized trees. Our results indicate that aphid tending by the exotic L. humile affects other insects on B. halimifolia more so than herbivory by the exploitative competitor T. bacharidis or nitrogen as a limiting nutrient.  相似文献   

14.
In studies of foraging behaviour in a multitrophic context, the fourth trophic level has generally been ignored. We used four aphid hyperparasitoid species: Dendrocerus carpenteri (Curtis) (Hymenoptera: Megaspilidae), Asaphes suspensus Walker (Hymenoptera: Pteromalidae), Alloxysta victrix (Westwood) (Hymenoptera: Alloxystidae) and Syrphophagus aphidivorus (Mayr) (Hymenoptera: Encyrtidae), to correlate their response to different cues with their ecological attributes such as host range and host stage. In addition, we compared our results with studies of primary parasitoids on the same plant–herbivore system. First, the olfactory response of females was tested in a Y‐tube olfactometer (single choice: plant, aphid, honeydew, parasitised aphid, aphid mummy, or virgin female parasitoid; dual choice: clean plant, plant with aphids, or plant–host complex). Second, their foraging behaviour was described on plants with different stimuli (honeydew, aphids, parasitised aphids, and aphid mummies). The results indicated that olfactory cues are probably not essential cues for hyperparasitoid females. In foraging behaviour on the plant, all species prolonged their total visit time and search time as compared to the control treatment (clean plant). Only A. victrix did not react to the honeydew. Oviposition in mummies prolonged the total visit time because of the long handling time, but the effect of this behaviour on search time could not be determined. No clear correlation between foraging behaviour and host stage or host range was found. In contrast to specialised primary aphid parasitoids that have strong fixed responses to specific kairomones and herbivore‐induced synomones, more generalist aphid hyperparasitoids seem to depend less on volatile olfactory stimuli, but show similarities with primary parasitoids in their use of contact cues while searching on a plant.  相似文献   

15.
Abstract

In the tritrophic system consisting of tomato, Solanum lycopersicum (L.), the aphid Macrosiphum euphorbiae (Thomas) and its natural enemy, the parasitoid Aphidius ervi (Haliday), it has been shown that the release of volatile organic compounds following aphid attack is responsible for attracting aphid parasitoids in wind tunnel experiments. The main compounds involved in these multitrophic interactions have been characterized and quantified. In this work, the possible activity of such compounds on plant direct defences against the aphid M. euphorbiae was assessed in laboratory tests. The selected compounds were applied to uninfested tomato plants, either by evaporation or contact, and performance of aphids, in terms of plant acceptance, fixing behaviour and aphid development, calculated in standard conditions. The results showed that two compounds, namely methyl salicylate and cis-hex-3-en-1-ol, alter aphid performance. These two compounds have been reported to be those eliciting the best response by A. ervi in terms of flight behavior (wind tunnel bioassay) and antennal stimulation (EAG bioassay).  相似文献   

16.
The sawfly, Diprion pini L., is a pest of Pinus in Europe and is mainly found on P. sylvestris L. and P. nigra laricio Poiret. The relative importance of female oviposition capacity and behaviour, egg development, and larval survival on a new host plant was measured on 11 pine species. Five were natural host plants and six non-host plants, five of which are not indigenous to Europe. Oviposition choice tests showed that females discriminated between the pine species. Egg and larval development also differed between pine species. However, the female choice was not linked with hatching rate and larval development. Results of biological tests clearly indicated that there were different response patterns of D. pini life stages in relation to pine species, and these patterns were the same with insects of four different origins. We discuss the importance of each potential barrier to colonisation of a new host.  相似文献   

17.
Aphids, like most phloem-feeding insects, commonly exhibit a high degree of host specificity. Plant-specific chemical compounds are likely to serve as important host selection cues for monophagous aphids and such substances could be present in aphid honeydew. Apterous virginoparae ofMyzus persicae (Sulzer) andPhorodon humuli (Schrank) were reared on a buffered sucrose solution containing various aphid honeydews or a mixture of amino acids. In two separate experiments, the host-specificP. humuli (hop aphid) could grow and reproduce only on diets containing honeydew collected from hop (Humulus lupulus L.).M. persicae (the green peach aphid, GPA) did not perform well on diets containing hop honeydew, perhaps because hop is a poor GPA host. Honeydew collected from preferred GPA host plants rape,Brassica napus L., and jimsonweed,Datura stramonium L., allowed GPA growth and reproduction. Hop aphids, however, performed poorly on rape and jimsonweed honeydew diets. Bell pepper,Capsicum annuum L., honeydew supported neither the hop aphid nor GPA. The study of aphid honeydew components may contribute towards a more complete understanding of host preference and selection phenomena in aphids.  相似文献   

18.
The symbiosis between grasses and endophytic fungi is a common phenomenon and can affect herbivore performance through acquired, chemical plant defence by fungal alkaloids. In laboratory experiments, two species of common grass aphids, Rhopalosiphum padi and Metopolophium dirhodum were tested, in a population experiment (on four plant cultivars) and individually (on one plant cultivar) for the effects of the endophyte, Neotyphodium lolii, that forms symbiotic associations with perennial ryegrass Lolium perenne. In the population experiment that lasted for four aphid generations both aphid species showed decreased population sizes when feeding on each of the four endophyte-infected cultivars. Individuals of R. padi tested individually showed reduced adult life span and fecundity when feeding on infected plants. Individuals of M. dirhodum showed no response in any of the traits measured. This suggests that R. padi individuals are more sensitive to endophyte infection than M. dirhodum individuals. However, all infected grass cultivars reduced population sizes of both aphid species over four generations. Therefore, fungal endophytes can reduce populations of aphid herbivores independent of plant cultivars.  相似文献   

19.
The response of generalist egg parasitoids to alternative natural hosts that are present simultaneously is not well known. We investigated the behavior of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) in relation to two field hosts Helicoverpa armigera Hübner and Spodoptera litura Fabricius, in choice and no choice tests. We quantified the effects of natal host species and post-emergence adult age on the oviposition preference of the parasitoids. H. armigera eggs were consistently preferred over S. litura eggs, regardless of the natal host and adult age. When only S. litura eggs were available as hosts, they were parasitized at statistically similar rates to H. armigera eggs (average of 17 ± 2.7 vs. 13 ± 3.0, H. armigera to S. litura). The adult lifespan and lifetime fecundity of T. pretiosum were variable but were affected by natal host species and/or host species to which they were exposed. Mean lifespan and fecundity of parasitoids that had developed in H. armigera eggs and were exposed to H. armigera eggs for oviposition were 13.9 ± 1.8 days and 98.7 ± 11.0 adult offspring. By contrast, those that developed in S. litura eggs and were exposed to S. litura eggs for oviposition lived for 7 ± 0.9 days and produced 53.8 ± 8.0 adult offspring. The ovigeny index (OI) was significantly lower in the parasitoids exposed to H. armigera eggs than in those exposed to S. litura eggs, regardless of the natal host, indicating that H. armigera eggs sustain the adult parasitoids better than S. litura eggs. These results are used to predict parasitoid behavior in the field when both hosts are available.  相似文献   

20.
Leaf disc choice test bioassay demonstrated that formulated neem seed extracts were highly deterrent and growth regulatory to rose aphid,Microsiphum rosae (L.) and Chrysanthemum aphid,Macrosiphoniella sanbornii (Gillete). Effective concentrations to produce 50% feeding deterrence was 0.80 and 0.84% respectively for 2nd instar nymphs irrespective of bioassay duration. The disruption of aphid feeding was related to the presence of azadirachtin concentration in the extract. The toxicity on contact from the leaf surface or via topical application due to azadirachtin was significantly different and topical treatment was at least 7 times more effective for both species. Thus growth regulatory effects of azadirachtin were influenced by the host plant and the stage of treatment. Field evaluation with formulated neem extracts revealed the effect to be more of growth regulatory nature thereby showing that azadirachtin is a physiological toxin for aphid species. Neem seed extracts reduced the population of aphid on respective host plants significantly, EC50 values being 0.88 and 0.96% forM. rosae andM. sanbornii respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号