首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Critical stages in the recruitment process of Rhamnus alaternus L   总被引:1,自引:0,他引:1  
BACKGROUND AND AIMS: Rhamnus alaternus is a Mediterranean shrub commonly used in reforestation programs. Although several aspects of its reproductive biology have been studied, little is known about the importance of the different recruitment stages in the overall regeneration process of this species, which limits its proper use in Mediterranean forests and shrubland management. The aim of the present work was to quantify the importance of the different recruitment stages in the regeneration process of R. alaternus. METHODS: Two populations of Rhamnus alaternus on the island of Mallorca that differ in climatic conditions, type of habitat and sex ratio were studied. The importance of seed production, seed dispersal and predation, seedling emergence and seedling survival for the regeneration of this species were quantified. KEY RESULTS: In both populations, fruit set and fruit removal by animals were not critical stages, since almost half of the flowers became mature fruits and 90% of those were dispersed. Most seeds were deposited under female conspecifics (86 and 47%, at Lloret and Esporles, respectively), and very few were found in open inter-spaces (1 and 5%). Post-dispersal seed predation (mostly by ants and rodents) was very high in both populations. Seedling emergence took place during autumn and early winter and it ranged from 31 to 68% depending upon year and microhabitat. The majority of emerged seedlings died during the first year, mainly due to desiccation; such mortality was influenced by rainfall and differed among microhabitats (varying from 67 to 100%). The general spatial distribution of seed rain was concordant with the seedling emergence and survival pattern in both populations. CONCLUSIONS: The recruitment of Rhamnus alaternus appeared to be mainly limited by seed and seedling survival, regardless of the type of habitat in which the species is found.  相似文献   

2.
Forest fragmentation is pervasive in tropical landscapes, and one pathway by which fragmentation may negatively impact populations is via edge effects. Early life‐stages are particularly important for species regeneration as they act as bottlenecks, but how edge effects may act differentially on different life‐stages is unknown. This study evaluated edge effects on multiple early life‐stages of a currently common animal‐dispersed, shade‐tolerant tree Tapirira mexicana (Anacardiaceae). The study was conducted in tropical premontane wet forest fragments in a highly deforested region of Costa Rica. The stages assessed were pre‐dispersal predation, primary dispersal, post‐dispersal predation, secondary dispersal, ex situ germination, in situ seed longevity, first and second year seedling abundance, second year seedling survivorship, and basal diameter growth. Results showed that impacts of edge effects were not equal across stages, but were limited to specific stages and times. One stage which may act as a bottleneck for species regeneration was pre‐dispersal predation. Over 60 percent of the seeds were predated by larvae, and predation was higher near the edge than interior habitat. Seeds lost viability within 10 d in the forest. Germination to first year seedling stage was also lower near edges, but such effect was eliminated within a year after that. Primary dispersal, seedling survivorship, and growth were not affected by proximity to edges, and both secondary dispersal and post‐dispersal predation were rare. This study demonstrates that current population abundance may not guarantee future species persistence and the importance of considering multiple life‐stages for a comprehensive assessment of forest fragmentation effects on species regeneration.  相似文献   

3.
Abstract. The recruitment of the relict shrub Juniperus communis on a mountain in SE Spain was studied during the period 1994–1998. The main objective was to determine both the quantitative and qualitative effects of bird dispersal on seedling establishment. Seed removal by birds, seed rain, post‐dispersal seed predation, germination, and seedling emergence and survival were analysed in different microhabitats. Birds removed 53 ‐ 89% of the seeds produced by plants. Seed rain was spatially irregular as most seeds accumulated near stones used by birds as perches and below mother plants while a few seeds were dropped in wet meadows and open ground areas. Post‐dispersal seed predation by rodents affected < 10% of dispersed seeds but varied significantly among microhabitats. Only 3.6 ‐ 5.5% of dispersed seeds appeared viable, as many seeds had aborted or showed wasp damage. Seeds germinated in the second and third springs after sowing, reaching a germination percentage of 36%. Seedling emergence was concentrated in wet meadows. Seedling mortality was high (75–80%), but significantly lower in wet meadows, the only microhabitat where seedlings could escape from summer drought, the main mortality cause. Seed abortion, germination and seedling mortality proved to be the main regeneration constraints of J. communis on Mediterranean mountains. Birds exerted a strong demographic effect, although their qualitative effect was limited by abiotic factors which caused the pattern of seed rain to differ from the final pattern of recruitment between microhabitats.  相似文献   

4.
Plant recruitment is limited by dispersal, if seeds cannot arrive at potential recruitment sites, and by establishment, due to a low availability of safe sites for recruitment. Seed-sowing experiments, scarcely applied along gradients of landscape alteration, are very useful to assess these limitations. Habitat loss and fragmentation may foster recruitment limitations by affecting all the processes from seed dispersal to seedling establishment. In this study, we perform a seed-sowing experiment to disentangle the importance of dispersal and establishment limitations in different stages of recruitment of the perennial herb Primula vulgaris in fragmented forests of the Cantabrian Range (Northwestern Spain). We evaluated the influence of ecological gradients resulting from habitat loss and fragmentation (modifications of habitat amount at the landscape and microhabitat scales, changes in the species’ population size, changes in seed predation and seedling herbivory) on seedling emergence, survival and early growth. We found strong evidence of dispersal limitation, as seedling emergence was very low in experimental replicates where no seeds were added. This limitation was independent of landscape alterations, as we found no relation with any of the ecological gradients studied. Establishment limitations at the germination phase were also unrelated to ecological gradients, probably because these limitations are more related to fine-scale environmental gradients. However, further monitoring revealed that seedling survival after summer and winter periods and seedling growth were conditioned by landscape alteration, as we found effects of habitat amount at the landscape and microhabitat scales, of presence of populations of P. vulgaris and of seedling herbivory. These effects were complex and sometimes opposite to what can be expected for adult plants, revealing the presence of different requirements between life stages.  相似文献   

5.
Seed dispersal can severely limit the quantity of plant recruits and their spatial distribution. However, our understanding of the role of dispersal in regeneration dynamics is limited by the lack of knowledge of seed deposition patterns in space and time. In this paper, we analyse the spatiotemporal variability of seed dispersal patterns in the Mediterranean maple, Acer opalus subsp. granatense, by monitoring seed rain along two years at a broad spatial scale (2 mountain ranges, 2 populations per range, 4 microhabitats per population). We quantified seed limitation and its components (source and dispersal limitation), and explored dispersal limitation in space by analysing dispersal distances, seed aggregation, and microhabitat seed distribution. Acer opalus subsp. granatense was strongly seed‐limited throughout the gradients explored, being always dispersal limitation much higher than source limitation. The distribution of seeds with distance from adult individuals was leptokurtic and right‐skewed in all populations, being both kurtosis and skewness higher the year of the highest seed production. Dispersal distances were shorter than expected by random in the four populations, which suggests distance‐limited dispersal. Dispersal patterns were highly aggregated and showed a preferential direction around adults. At the microhabitat scale, most seeds accumulated under adult maples. However, there were no more seeds under trees and shrubs other than maple than in open interspaces, implying that established vegetation does not disrupt patterns of seed deposition by physically trapping seeds. When compared with patterns of seedling establishment, limited dispersal ability and inter‐annual spatial concordance in seed rain patterns suggest that several potentially safe sites for recruitment have a very low probability of receiving seeds in most maple populations. These findings are especially relevant for rare species such as Acer opalus subsp. granatense, and illustrate how dispersal studies are not only crucial for our understanding of plant population dynamics but also to provide conservation directions.  相似文献   

6.
Recruitment is a complex process consisting of sequential stages affected by biotic interactions and abiotic factors. Assessment of these sequential stages and corresponding subprocesses may be useful in identifying the most critical stages. Accordingly, to assess the factors that may determine the altitudinal range limits of the high mountain Mediterranean plant Silene ciliata, a set of demographic stages, from flower production to establishment of 2‐yr‐old plants, and their influence on recruitment probability were examined using a step‐by‐step approach. We integrated florivory, pollination and pre‐dispersal seed predation as pre‐dispersal factors, and seedling emergence and survival as post‐dispersal determinants of recruitment. Three populations were monitored at the southernmost margin of the species along its local altitudinal range. Previous studies suggest that seediness is strongly limited by summer drought especially at the lower boundary of the species, a situation that may worsen under current global warming. Our results showed that recruitment was mainly limited by low seed production in the pre‐dispersal stage and low seedling emergence and survival in the post‐dispersal stage, probably due to environmental harshness in summer. By contrast, biotic factors responsible for propagule loss, such as flower and fruit predation, had a minor effect on the probability of plant recruitment. Although the relative importance of transition probabilities was similar among populations along the altitudinal range, comparatively lower flower production significantly reduced the number of recruited plants at the lowest altitude population. This demographic bottleneck, together with increased competition with other species favoured by climate warming, might collapse population growth and limit persistence at the lower altitudinal range of the species, raising its low local altitudinal edge.  相似文献   

7.
Aim To infer future changes in the distribution of isolated relict tree populations at the limit of a species’ geographical range, a deep understanding of the regeneration niche and the spatial pattern of tree recruitment is needed. Location A relict Pinus uncinata population located at the south‐western limit of distribution of the species in the Iberian System of north‐eastern Spain. Methods Pinus uncinata individuals were mapped within a 50 × 40‐m plot, and their size, age and reproductive status were estimated. Data on seed dispersal were obtained from a seed‐release experiment. The regeneration niche of the species was assessed based on the associations of seedling density with substrate and understorey cover. The spatial pattern of seedlings was described using point‐pattern (Ripley's K) and surface‐pattern (correlograms, Moran's I) analyses. Statistical and inverse modelling were used to characterize seedling clustering. Results Pine seedlings appeared aggregated in 6‐m patches. Inverse modelling estimated a longer mean dispersal distance (27 m), which corresponded to the size of a large cluster along the north to north‐eastward direction paralleled by an eastward trend of increasing seedling age. The two spatial scales of recruitment were related to two dispersal processes. The small‐scale clustering of seedlings was due to local seed dispersal in open areas near the edge of Calluna vulgaris mats: the regeneration niche. The long‐range expansion might be caused by less frequent medium‐distance dispersal events due to the dominant north‐westerly winds. Main conclusions To understand future range shifts of marginal tree populations, data on seed dispersal, regeneration niche and spatial pattern of recruitment at local scales should be obtained. The monitoring of understorey communities should be a priority in order to predict correctly shifts in tree species range in response to global warming.  相似文献   

8.
花楸树种子散布、萌发与种群天然更新的关系   总被引:3,自引:1,他引:2  
花楸树是我国东北林区重要的非木质资源树种,其实生天然更新不良.本文通过研究花楸树种子散布、土壤种子库及种子萌发出土过程,分析花楸树实生天然更新的影响因素.结果表明:自然散落的花楸树果实96.1%分布于母株2 m范围内,凋落物层和土壤表层(0~2 cm)的种子数占土壤种子库总数的97.0%;不同季节花楸树土壤种子库种子数量差别很大,当年11月上旬种子数量最多,达(257.7±69.2)粒·m-2;翌年7月下旬种子数量最少,仅为(2.9±2.9)粒·m-2;温度不是花楸树种子萌发出土过程的限制因子,0 ℃~5 ℃时幼苗出苗率达(67.5±6.6)%,但对其出苗速率影响显著.土壤含水量为50%时,花楸树出苗率最高,达(74.7±4.2)%;含水量为60%时,幼苗死亡率最低,为(32.6±0.6)%.花楸树种子的散布格局和土壤种子库的时空分布格局影响种子的萌发出土过程,进而影响其种群的天然更新.  相似文献   

9.
Plant–animal mutualistic interactions, such as pollination and seed dispersal, affect ecosystem functioning by driving plant population dynamics. However, little is known of how the diversity of interactions in these mutualistic networks determines plant regeneration dynamics. To fill this gap, interaction networks should not only account for the number of seeds dispersed by animals, but also for seed fate after dispersal. Here, we compare plant–animal networks at both the seed dispersal and seedling recruitment stage to evaluate how interaction diversity, represented by different network metrics, changes throughout the process of plant regeneration. We focused on a system with six species of frugivorous birds and three species of fleshy‐fruited trees in the temperate secondary forest of the Cantabrian Range (northern Iberian Peninsula). We considered two plant cohorts corresponding to two fruiting years showing strong differences in fruit and frugivore abundance. Seed dispersal interactions were estimated from a spatially‐explicit, field‐validated model predicting tree and bird species‐specific seed deposition in different microhabitats. These interactions were further transformed into interactions at the seedling recruitment stage by accounting for plant‐ and microhabitat‐specific seed fates estimated from field sampling. We found that network interaction diversity varied across plant regeneration stages and cohorts, both in terms of the evenness and the number of paired interactions. Tree–bird interactions were more evenly distributed across species pairs at the recruitment stage than at the seed deposition stage, although some interactions disappeared in the seed‐to‐seedling transition for one plant cohort. The variations in interaction diversity were explained by between‐plant differences in post‐dispersal seed fate and in inter‐annual fruit production, rather than by differences between frugivores in seed deposition patterns. These results highlight the need for integrating plant traits and disperser quality to predict the functional outcome of plant–animal mutualistic networks.  相似文献   

10.
不同空间尺度下的肉果植物扩散过程和机理   总被引:5,自引:2,他引:3  
肉果植物扩散的生态学过程在最近得到生态学者们的广泛关注,其扩散过程包括果实搬运、果实消耗、种子雨、种子取食、种子库动态、萌发和幼苗定居等。许多过程涉及到果食性动物和肉果植物之间的互惠的协同进化关系。对最近15a关于肉果植物扩散的研究论文进行了综述,探讨在生境、微生境、景观和区域等常用的空间尺度上,肉果植物扩散和定居过程的格局与机理。  相似文献   

11.
Post‐dispersal seed predation is a crucial phenomenon for plant recruitment, and its incidence can be hypothesized to increase in ecologically and geographically marginal populations of threatened species, such as yew (Taxus baccata). Here we examine the among‐ and within‐population patterns of seed consumption by rodents and evaluate to what extent they are linked to marginality in Mediterranean low‐density yew stands. Among populations we tested: (i) whether the rates of seed predation found in our marginal sites were consistently higher than in populations from core regions; (ii) within populations we evaluated whether rodents preferred microhabitats with greater seed availability (beneath female yew trees) or with lower predation risk (shrubs) in two seeding seasons (fall–winter 2005 and 2006). Predation rates were extremely high (92.5%) and they were well above values reported for core populations (65.4%), to the extent that rodents almost completely depleted the experimental seeds in all populations and years. Our expectation of lower predation rates with decreasing vegetation cover was also confirmed for all years and populations, suggesting that rodent foraging was risk‐sensitive. This microhabitat effect outweighed the effect of seed availability under female yew trees, implying also that rodents selectively consumed the most valuable seeds in terms of their recruitment prospects. Overall, our results suggest that the mechanisms underlying seed depletion and its demographic consequences are linked to the effects of reduced yew performance in ecologically marginal habitats.  相似文献   

12.
The processes associated with the dispersal of fleshy-fruited species have been an important focus of ecological research during the last two decades. These processes include fruit removal, seed rain, seed predation, seed bank dynamics, germination and establishment. Some of them interfere with the mutualistic interaction of frugivorous birds and fleshy-fruited plants. We might expect such interference to be most pronounced where the intensity of the different processes has a spatial distribution similar to that of the original seed shadow. The central theme of this review is that the main processes associated with dispersal and recruitment act at different spatial scales. To investigate this idea, about 140 publications on dispersal of fleshy-fruited species from 1980 to 2000 were screened for the spatial scaling of these processes. Microhabitat, habitat, landscape, region and biome were the five spatial scales most commonly used. However, the representation of the different scales was not fully balanced; large-scale studies were scarce and most publications considered only one scale.The review reveals some trends in scaling of the main processes of plant dispersal and recruitment. Seed dispersal by birds and seed predation by rodents are strongly determined at the habitat level, and several studies report negative results for contrasts between microhabitats. Germination and seedling establishment, on the other hand, appear to be mainly influenced by differences between microhabitats, though information on larger scales is scarce. Genetic differentiation and phenology of fruiting have mostly been investigated at the habitat, landscape and regional scale, whereas information on the abundance of frugivorous birds and patterns in plant distribution results are available across the full range of scales from the level of the microhabitat to the region and biome. Future research should be directed to the major gaps in our knowledge, i.e. regional and zonal comparisons of the processes associated with dispersal. They should also be more sensitive to scale issues and ideally should have a multi-scaled design.  相似文献   

13.
Thymelaea velutina (Thymelaeaceae) is a dioecious shrub that presents a unique type of heterocarpy which consists of the simultaneous production of dry and fleshy fruits. It is endemic to the Balearic Islands (Western Mediterranean) and is found both in dunes and mountain areas. The goal of this study was to identify which factors influence the production of both fruit types, examining the variation of their effects at a spatio-temporal scale (comparing two localities in different years). Specifically, we investigated (1) whether pollen limitation influences the type of fruit produced, and (2) the possible differences in seed size, mass, dispersal capacity, seed predation, germination patterns and seedling survival between fruit types. We also examined if the production of fleshy fruits was modified with the application of gibberellins to reproductive branches. Although fleshy fruits were consistently more abundant than dry ones at both populations, their proportion was significantly higher at the site with greater precipitation. The addition of either pollen or gibberellins did not affect the proportion of each fruit type. Seeds in fleshy fruits are consistently larger, heavier and more likely to be dispersed than seeds in dry fruits, but germinability, germination rate and seedling survival was similar among fruit types. Heterocarpy in this species is currently maintained as there is no apparent factor that exerts any strong selective pressure on either fruit type. The two fruit types might even have different `functions', one serving especially for dispersal and population expansion and the other for producing a seed bank that ensures an eventual germination.  相似文献   

14.
Seed dispersal and predation play important roles in plant life history by contributing to recruitment patterns in the landscape. Mast-seeding – extensive synchronized inter-annual variability in seed production – is known to influence the activity of acorn consumers at source trees, but little is known about its effect on post-dispersal predation. We conducted a planting experiment over three years to investigate the relationship between habitat-level post-dispersal predation and landscape-wide acorn production of three sympatric oak species (Quercus spp.). We measured post-dispersal predation in three oak-dominated habitats – savanna (under Q. lobata), forest edge (under Q. agrifolia), and woodland (under Q. douglasii) – as well as in chaparral and open fields. Overall, landscape-level predation was similarly high among study years, averaging 61.4%. Neither species nor mass of planted acorns affected predation. Habitat had a significant effect on post-dispersal predation risk with acorns disappearing most rapidly in chaparral and least rapidly in woodlands. However, a significant interaction between year and habitat (Z = −4.5, P < 0.001) showed that the hierarchy of predation risk among habitats was inconsistent among years. Using annual acorn census data from local populations of each oak species, we found that predation risk in oak-dominated habitats was significantly and positively related to acorn production of the overstory species (Z = −9.53, P = 0.009). Our findings add to growing evidence that seed dispersal, predation, and regeneration are context-dependent on annual variation in community-level seed production, and we discuss the potential consequences of these dynamics on oak recruitment and animal behavior.  相似文献   

15.
The effect of forest disturbance on survival and secondary dispersal of an artificial seed shadow (N= 800) was studied at Brownsberg Natural Park, Suriname, South America. We scattered single seeds of the frugivore‐dispersed tree Virola kwatae (Myristicaceae), simulating loose dispersal by frugivores, in undisturbed and disturbed secondary forest habitats. Seed survival rate aboveground was high (69%) within 2 wk and was negatively correlated with scatterhoarding rate by rodents, the latter being significantly lower in the undisturbed forest (9%) than in the disturbed forest (20%). Postdispersal seed predation by vertebrates was low (3%) and infestation of seeds by invertebrates was almost zero in all instances. Therefore, secondary seed dispersal by rodents in forest is not as critical for recruitment as observed among other bruchid‐infested large‐seeded species. Secondary seed dispersal by rodents may, however, facilitate seedling recruitment whether cached seeds experience greater survival than seeds remaining above ground surface.  相似文献   

16.
植物的繁殖体总是面临来自各类生物(如昆虫、脊椎动物、真菌)的捕食风险。因动物捕食引起的种子死亡率影响植物的适合度、种群动态、群落结构和物种多样性的保持。种子被捕食的时间和强度成为植物生活史中发芽速度、地下种子库等特征的主要选择压力,而种子大小、生境类型等因素也影响动物对植物种子的捕食。捕食者饱和现象被认为是植物和种子捕食者之间的高度协同进化作用的结果,是限制动物破坏种子、提高被扩散种子存活率的一种选择压力。大部分群落中的大多数植物种子被动物扩散。种子扩散影响种子密度、种子被捕食率、病原体攻击率、种子与母树的距离、种子到达的生境类型以及建成的植株将与何种植物竞争,从而影响种子和幼苗的存活,最终影响母树及后代植物的适合度。种子被动物扩散后的分布一般遵循负指数分布曲线,大多数种子并没有扩散到离母树很远的地方。捕食风险、生境类型、植被盖度均影响动物对种子的扩散。植物结实的季节和果实损耗的过程也体现了其对扩散机会的适应。许多动物有贮藏植物种子的行为。动物贮藏植物繁殖体的行为,一方面调节食物的时空分布,提高了贮食动物在食物缺乏期的生存概率;另一方面也为种子萌发提供了适宜条件,促进了植物的扩散。于是,植物与贮食动物形成了一种协同进化关系,这种关系可能是自然界互惠关系(mutualism)的一种。影响幼苗存活和建成的因子包括种子贮蒇点的微生境、湿度、坡向、坡度、林冠盖度等。许多果食性动物吃掉果肉后,再将完好的种子反刍或排泄出来。种子经动物消化道处理后,发芽率常有所提高。  相似文献   

17.
Despite the well‐documented impacts of consumers on seed abundance the link between seed predation and plant population dynamics remains poorly understood because experimental studies linking patterns of predation with seedling establishment are rare. We used experimental manipulations with six woody plant species to elucidate the effects of seed predator type, habitat, and plant species identity on rates of seed predation and seedling recruitment in the Neotropical savannas known as the Cerrado. We found that seed predation rates are consistently high across a diversity of local habitat types, with important inter‐habitat variation in seed predation for three of the six species used in our experiments. We also found that seed predation has a clear demographic signal – experimentally excluding predators resulted in higher rates of seedling establishment over the course of two seasons. Because the intensity of seed predation varied between species and habitats, it may play a role in structuring local patterns of plant abundance and community composition. Finally, our results lend support to the recent hypothesis that herbivores have major and underappreciated impacts in Neotropical savannas, and that top–down factors can influence the demography of plants in this extensive and biodiversity‐rich biome in previously unexplored ways.  相似文献   

18.
The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitationeffect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent’s behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests.  相似文献   

19.
In seasonally flooded wetlands, inundation and associated organic debris deposition followed by a drawdown period can promote plant community diversity across space and time. Post‐flood regeneration might be influenced by the direct effect of flooding on seed dispersal and seedling emergence, as well as the indirect effect of organic debris on seed trapping and germination. Our objective was to examine the influence of seasonal flooding, topography, and organic debris cover on seedling distribution in a seasonally flooded grassland. We measured species richness, seedling abundance, and organic debris cover for 3 yr in a seasonally flooded grassland in the Pantanal, Brazil, at three topographic levels at the end of the flood season and during the dry season when there was no debris deposition. A total of 43 species were recorded, with no difference in species richness detected between seasons. However, the abundance of some species was higher post‐flood than during the dry period. The greatest seedling abundance and richness were found post‐flood at intermediate elevations, followed by high and the lowest elevations. Seed germination and seedling establishment were likely suppressed at low topographic positions due to shading from organic debris and poor drainage. Therefore, areas with predictable annual floods promote diversity by creating spatial and temporal variations in environmental conditions.  相似文献   

20.
Post‐dispersal seed predation is a key process determining the variability in seed survival in forests, where most seeds are handled by rodents. Seed predation is thought to affect seedling regeneration, colonization ability and spatial distribution of plants. Basic seed traits are the essential factors affecting rodent foraging preferences and thus seed survival and seedling recruitment. Many studies have discussed several seed traits and their effects upon seed predation by rodents. However, the results of those previous studies are usually equivocal, likely because few seed traits and/or plant species tend to be incorporated into these studies. In order to elucidate the relationships between seed predation and seed traits, we surveyed the predation of 48 600 seeds in a natural pine forest, belonging to 30 species, for three consecutive years. The results demonstrated that: (i) seed size and seed coat hardness did not significantly affect seed predation; (ii) total phenolics had a negative effect upon seed predation; (iii) positive effects of nitrogen content upon seed predation were found. From our study, it seems that the better strategy to prevent heavy predation is for plants to produce seeds with higher total phenolics content rather than physical defenses (i.e. hard seed coat) or larger seeds. Additionally, rodent foraging preference may depend more on Nitrogen content than other nutrient content of seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号