首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA secondary structure and compensatory evolution   总被引:6,自引:0,他引:6  
The classic concept of epistatic fitness interactions between genes has been extended to study interactions within gene regions, especially between nucleotides that are important in maintaining pre-mRNA/mRNA secondary structures. It is shown that the majority of linkage disequilibria found within the Drosophila Adh gene are likely to be caused by epistatic selection operating on RNA secondary structures. A recently proposed method of RNA secondary structure prediction based on DNA sequence comparisons is reviewed and applied to several types of RNAs, including tRNA, rRNA, and mRNA. The patterns of covariation in these RNAs are analyzed based on Kimura's compensatory evolution model. The results suggest that this model describes the substitution process in the pairing regions (helices) of RNA secondary structures well when the helices are evolutionarily conserved and thermodynamically stable, but fails in some other cases. Epistatic selection maintaining pre-mRNA/mRNA secondary structures is compared to weak selective forces that determine features such as base composition and synonymous codon usage. The relationships among these forces and their relative strengths are addressed. Finally, our mutagenesis experiments using the Drosophila Adh locus are reviewed. These experiments analyze long-range compensatory interactions between the 5' and 3' ends of Adh mRNA, the different constraints on secondary structures in introns and exons, and the possible role of secondary structures in RNA splicing.  相似文献   

2.
RNA structure formation is hierarchical and, therefore, secondary structure, the sum of canonical base-pairs, can generally be predicted without knowledge of the three-dimensional structure. Secondary structure prediction algorithms evolved from predicting a single, lowest free energy structure to their current state where statistics can be determined from the thermodynamic ensemble. This article reviews the free energy minimization technique and the salient revolutions in the dynamic programming algorithm methods for secondary structure prediction. Emphasis is placed on highlighting the recently developed method, which statistically samples structures from the complete Boltzmann ensemble.  相似文献   

3.
Vienna RNA secondary structure server   总被引:1,自引:0,他引:1       下载免费PDF全文
The Vienna RNA secondary structure server provides a web interface to the most frequently used functions of the Vienna RNA software package for the analysis of RNA secondary structures. It currently offers prediction of secondary structure from a single sequence, prediction of the consensus secondary structure for a set of aligned sequences and the design of sequences that will fold into a predefined structure. All three services can be accessed via the Vienna RNA web server at http://rna.tbi.univie.ac.at/.  相似文献   

4.
An RNA secondary structure workbench   总被引:2,自引:4,他引:2  
A multiple approach to the study of RNA secondary structure is described which provides for the independent drawing of structures using base-pairing lists, for the generation of local structures in the form of hairpins, and for the generation of global structures by both Monte Carlo and dynamic programming methodologies. User-adjustable parameters provide for limiting the size of hairpin loops, bulges and inner loops, and constraints can be imposed relative to position-dependent base pairing.  相似文献   

5.
6.
Nucleolin promotes secondary structure in ribosomal RNA   总被引:3,自引:0,他引:3  
The effect of nucleolin on the secondary structure of RNA was studied using circular dichroism (CD). Nucleolin caused decreases in the main positive bands and shifts to higher wavelengths in the CD spectra of synthetic polynucleotides such as poly(G) and poly(A) indicating helix destabilizing activity. In contrast, nucleolin effected increases in signal and shifts to lower wavelengths of the peaks of CD spectra of ribosomal RNA, suggesting enhancement of secondary structure. Another major nucleolar RNA binding protein, B23, had helix destabilizing activity but did not enhance RNA secondary structure. It is proposed that nucleolin promotes formation of secondary structure in preribosomal RNA during the early stages of ribosome biogenesis.  相似文献   

7.
Implications of secondary structure in messenger RNA   总被引:2,自引:0,他引:2  
  相似文献   

8.
The total number of RNA secondary structures of a given length with minimal hairpin loop length m(m>0) and with minimal stack length l(l>0) is computed, under the assumption that all base pairs can occur. Asymptotics are derived from the determination of recurrence relations of decomposition properties.  相似文献   

9.
10.
We have applied the Pipas-McMahon algorithm based on free energy calculations to the search for a 5S RNA base-pair structure common to all known sequences. We find that a 'Y' shaped model is consistently among the structures having the lowest free energy using 5S RNA sequences from either eukaryotic or prokaryotic sources. Compaison of this 'Y' structure with models which have recently been proposed show these models to be remarkably similar, and the minor differences are explicable based on the technique used to obtain the model. That prokaryotic and eukaryotic 5S RNA can adopt a similar secondary structure is strong support for its resistance to change during evolution.  相似文献   

11.
S Jeffery  S E Hawkins 《Microbios》1977,18(71):35-49
Naegleria gruberi were grown on bacteria and methods were devised to free the cellular RNA from bacterial RNA contamination. Use of actinomycin D and cycloheximide showed that the transformation of Naegleria from amoeba to flagellate required RNA synthesis for 30 min and protein synthesis for 40 min after the initial stimulus of distilled water. Comparison of the patterns of RNA synthesized during transformation with those during growth indicated a considerable amount of new RNA produced during the phenotypic change. Most marked was the increase in RNA co-migrating on polyacrylamide gels with the small ribosomal sub-unit RNA, together with RNAs between the latter and transfer RNA. These results were compared with other published results using axenically-grown cells cells and sucrose density gradient centrifugation. Cells placed in 80 mM NaCl instead of distilled water fail to transform but the pattern of newly-synthesized RNAs was not significantly different from that seen in transforming cells. This suggested that high salt concentrations inhibit transformation by inhibiting synthesis and/or assembly of certain proteins rather than RNA synthesis. Eluted material from various regions of polyacrylamide gels containing RNA extracted from transforming cells was used in a cell-free system. Incorporation of 3H-glutamic acid but not 3H-tryptophan was stimulated by material extracted from the 18S regions of the gels.  相似文献   

12.
Protein synthesis in adenovirus-infected cells is regulated during the late phase of infection. The rate of initiation is maintained by a small viral RNA, virus-associated (VA) RNAI, which prevents the phosphorylation of eukaryotic initiation factor eIF-2 by a double-stranded RNA-activated protein kinase, DAI. On the basis of nuclease sensitivity analysis, a secondary-structure model was proposed for VA RNA. The model predicts a complex stem-loop structure in the central part of the molecule, the central domain, joining two duplexed stems. The central domain is required for the inhibition of DAI activation and participates in the binding of VA RNA to DAI. To assess the significance of the postulated stem-loop structure in the central domain, we generated compensating, deletion, and substitution mutations. A substitution mutation which disrupts the structure in the central domain abolishes VA RNA function in vitro and in vivo. Base-compensating mutations failed to restore the function or structure of the mutant, implying that the stem-loop structure may not exist. To confirm this observation, we tested mutants with alterations in the hypothetical loop and short stem that constitute the main features of the wild-type model structure. The upper part of the hypothetical loop could be deleted without abolishing the ability of the RNA to block DAI activation in vitro, whereas other loop mutations were deleterious for function and caused major rearrangements in the molecule. Base-compensating mutations in the stem did not restore the expected base pairing, even though the mutant RNAs were still functional in vitro. Surprisingly, a mutant with a noncompensating substitution mutation in the stem was more effective than wild-type VA RNAI in DAI inhibition assays but was ineffective in vivo. The structural and functional consequences of these mutations do not support the proposed model structure for the central domain, and we therefore suggest an alternative structure in which tertiary interactions may play a significant role in shaping the specificity of VA RNA function in the infected cell. Discrepancies between the functionality of mutant forms of VA RNA in vivo and in vitro are consistent with the existence of additional roles for VA RNA in the cell.  相似文献   

13.
Cell-free protein synthesis is a promising technology featuring many advantages compared to in vivo expression techniques. However, most proteins are still synthesized in vivo due to relatively low protein yields commonly achieved in vitro, especially in the batch mode of reaction. In Escherichia coli S30 extract-based cell-free systems protein yields are supposed to be partially limited by a secondary structure formation of the mRNA. In this study we checked promising members of various classes of RNA chaperones and several different RNA helicases on their ability to enhance in vitro translation. The data clearly show that the addition of none of these factors provides a general solution to the problem. However, protein yields can be increased in presence of a microRNA hybridizing with the 5′ untranslated region of mRNAs, possibly by inducing structural changes improving accessibility of the Shine Dalgarno sequence for the ribosomes.  相似文献   

14.
Savill NJ  Hoyle DC  Higgs PG 《Genetics》2001,157(1):399-411
We test models for the evolution of helical regions of RNA sequences, where the base pairing constraint leads to correlated compensatory substitutions occurring on either side of the pair. These models are of three types: 6-state models include only the four Watson-Crick pairs plus GU and UG; 7-state models include a single mismatch state that combines all of the 10 possible mismatches; 16-state models treat all mismatch states separately. We analyzed a set of eubacterial ribosomal RNA sequences with a well-established phylogenetic tree structure. For each model, the maximum-likelihood values of the parameters were obtained. The models were compared using the Akaike information criterion, the likelihood-ratio test, and Cox's test. With a high significance level, models that permit a nonzero rate of double substitutions performed better than those that assume zero double substitution rate. Some models assume symmetry between GC and CG, between AU and UA, and between GU and UG. Models that relaxed this symmetry assumption performed slightly better, but the tests did not all agree on the significance level. The most general time-reversible model significantly outperformed any of the simplifications. We consider the relative merits of all these models for molecular phylogenetics.  相似文献   

15.
16.
RNA viruses: genome structure and evolution   总被引:3,自引:0,他引:3  
The explosive pace of sequencing of RNA viruses is leading to rapid advances in our understanding of the evolution of these viruses and of the ways in which their genomes are organized and expressed. New insights are coming not only from genomic nucleotide sequence comparisons, but also from direct sequencing of transcribed mRNAs and of RNAs that serve as intermediates in replication.  相似文献   

17.

Background  

Pairwise stochastic context-free grammars (Pair SCFGs) are powerful tools for evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary structure prediction, but the associated algorithms are intensive in both CPU and memory usage. The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985 algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences and using this first pass to limit the range of structures and/or alignments that can be considered.  相似文献   

18.
Wang X  Lavrov DV 《Gene》2011,475(1):22-29
The evolution of alloacceptor transfer RNAs (tRNAs) has been traditionally thought to occur vertically and reflect the evolution of the genetic code. Yet there have been several indications that a tRNA gene could evolve horizontally, from a copy of an alloacceptor tRNA gene in the same genome. Earlier, we provided the first unambiguous evidence for the occurrence of such "tRNA gene recruitment" in nature--in the mitochondrial (mt) genome of the demosponge Axinella corrugata. Yet the extent and the pattern of this process in the evolution of tRNA gene families remained unclear. Here we analyzed tRNA genes from 21 mt genomes of demosponges as well as nuclear genomes of rhesus macaque, chimpanzee and human. We found four new cases of alloacceptor tRNA gene recruitment in mt genomes and eleven cases in the nuclear genomes. In most of these cases we observed a single nucleotide substitution at the middle position of the anticodon, which resulted in the change of not only the tRNA's amino-acid identity but also the class of the amino-acyl tRNA synthetases (aaRSs) involved in amino-acylation. We hypothesize that the switch to a different class of aaRSs may have prevented the conflict between anticodon and amino-acid identities of recruited tRNAs. Overall our results suggest that gene recruitment is a common phenomenon in tRNA multigene family evolution and should be taken into consideration when tRNA evolutionary history is reconstructed.  相似文献   

19.
With discovery of diverse roles for RNA, its centrality in cellular functions has become increasingly apparent. A number of algorithms have been developed to predict RNA secondary structure. Their performance has been benchmarked by comparing structure predictions to reference secondary structures. Generally, algorithms are compared against each other and one is selected as best without statistical testing to determine whether the improvement is significant. In this work, it is demonstrated that the prediction accuracies of methods correlate with each other over sets of sequences. One possible reason for this correlation is that many algorithms use the same underlying principles. A set of benchmarks published previously for programs that predict a structure common to three or more sequences is statistically analyzed as an example to show that it can be rigorously evaluated using paired two-sample t-tests. Finally, a pipeline of statistical analyses is proposed to guide the choice of data set size and performance assessment for benchmarks of structure prediction. The pipeline is applied using 5S rRNA sequences as an example.  相似文献   

20.
Parsch J  Braverman JM  Stephan W 《Genetics》2000,154(2):909-921
A novel method of RNA secondary structure prediction based on a comparison of nucleotide sequences is described. This method correctly predicts nearly all evolutionarily conserved secondary structures of five different RNAs: tRNA, 5S rRNA, bacterial ribonuclease P (RNase P) RNA, eukaryotic small subunit rRNA, and the 3' untranslated region (UTR) of the Drosophila bicoid (bcd) mRNA. Furthermore, covariations occurring in the helices of these conserved RNA structures are analyzed. Two physical parameters are found to be important determinants of the evolution of compensatory mutations: the length of a helix and the distance between base-pairing nucleotides. For the helices of bcd 3' UTR mRNA and RNase P RNA, a positive correlation between the rate of compensatory evolution and helix length is found. The analysis of Drosophila bcd 3' UTR mRNA further revealed that the rate of compensatory evolution decreases with the physical distance between base-pairing residues. This result is in qualitative agreement with Kimura's model of compensatory fitness interactions, which assumes that mutations occurring in RNA helices are individually deleterious but become neutral in appropriate combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号