首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary During its growth phase, the oocyte is associated with a single highly polyploid nurse cell. Although the nurse cell contains high amounts of cytoplasmic ribonucleic acid, no RNA seems to be transferred to the oocyte. Autoradiographs prepared after pulse labelling with 3H-uridine indicate that the nuclei of both cell types are actively engaged in RNA synthesis during the whole period of oogenesis. Chromosomal RNA synthesis is most intense in oogonia before onset of the growth period. It still proceeds, although at a lower rate, after termination of oocyte growth when all RNA is lost from the nucleoli. Nucleolar RNA synthesis, on the other hand, is strictly correlated with the growth phase proper. Grain counts on chromatin and nucleoli of both egg cells and nurse cells at all stages of oogenesis indicate that nucleolar and chromosomal RNA synthesis are independent of each other to a large extent. It is thought that the type of RNA synthesized within the nucleolus is essentially ribosomal while the chromosomes are primarily engaged in the formation of messenger RNA.  相似文献   

2.
The ultra- and microstructure of the female reproductive system of Matsucoccus matsumurae was studied using light microscopy, scanning and transmission electron microscopy. The results revealed that the female reproductive system of M. matsumurae is composed of a pair of ovaries, a common oviduct, a pair of lateral oviducts, a spermatheca and two pairs of accessory glands. Each ovary is composed of approximately 50 telotrophic ovarioles that are devoid of terminal filaments. Each ovariole is subdivided into an apical tropharium, a vitellarium and a short pedicel connected to a lateral oviduct. The tropharium contains 8–10 trophocytes and two early previtellogenic oocytes termed arrested oocytes. The trophocytes degenerate after egg maturation, and the arrested oocytes are capable of further development. The vitellarium contains 3–6 oocytes of different developmental stages: previtellogenesis, vitellogenesis and choriogenesis. The surface of the vitellarium is rough and composed of a pattern of polygonal reticular formations with a center protuberance. The oocyte possesses numerous yolk spheres and lipid droplets, and is surrounded by a mono-layered follicular epithelium that becomes binucleate at the beginning of vitellogenesis. Accessory nuclei are observed in the peripheral ooplasm during vitellogenesis.  相似文献   

3.
马娜  花保祯 《昆虫学报》2010,53(11):1220-1226
卵巢管结构及卵子发生过程在探讨昆虫系统发育关系中有重要意义, 深入研究长翅目昆虫卵巢管结构及卵子发生可为确定其在全变态类昆虫中的系统发育地位提供依据。本文利用光学显微镜和扫描、透射电子显微镜技术研究了刘氏蝎蛉Panorpa liui Hua卵巢管超微结构及卵子发生过程。结果表明:蝎蛉卵巢由12根多滋式卵巢小管组成, 每个卵巢小管分为端丝、生殖区和生长区。根据滋养细胞、卵母细胞及滤泡细胞的变化, 卵子发生过程可分为5个阶段:卵黄发生前早期、卵黄发生前中期、卵黄发生前后期、卵黄发生期及卵壳形成期。在卵黄发生期, 滋养细胞为卵母细胞提供养分后逐渐消亡, 而此时的卵母细胞可通过滤泡之间的细胞间隙从血淋巴中获取营养。在卵壳形成期间, 3种不同类型的滤泡细胞参与形成不同区域的卵壳, 从而形成不同花饰的卵壳表面。据此推测, 与其他目的滋养细胞数目相比, 每个卵室中2次有丝分裂形成3个滋养细胞可能是比较原始的特征, 表明长翅目昆虫可能是全变态类群中近基部的分支。  相似文献   

4.
The number of ribosomal RNA molecules which are transferred through an average nuclear pore complex per minute into the cytoplasm (nuclear pore flow rate, NPFR) during oocyte growth of Xenopus laevis is estimated. The NPFR calculations are based on determinations of the increase of cytoplasmic rRNA content during defined time intervals and of the total number of pore complexes in the respective oogenesis stages. In the mid-lampbrush stage (500–700 μm oocyte diameter) the NPFR is maximal with 2.62 rRNA molecules/pore/minute. Then it decreases to zero at the end of oogenesis. The nucleocytoplasmic RNA flow rates determined are compared with corresponding values of other cell types. The molecular weight of the rRNA precursor transcribed in the extrachromosomal nucleoli of Xenopus lampbrush stage oocytes is determined by acrylamide gel electrophoresis to be 2.5 × 106 daltons. From the temporal increase of cytoplasmic rRNA (3.8 μg per oocyte in 38 days) and the known number of simultaneously growing precursor molecules in the nucleus the chain growth rate of the 40 S precursor RNA is estimated to be 34 nucleotides per second.  相似文献   

5.
6.
Conditions were established for the maximal synthesis of RNA by Xenopus cultured cell nuclei. These differed from those for mammalian nuclei in having a lower K+ optimum. The Xenopus nuclei showed all three RNA polymerase activities and processed rRNA to 28 S and 18 S species. Extracts of full-grown oocytes stimulated the rate of RNA synthesis 2.5-fold and caused it to continue linearly for at least 6 hr. This full effect could be produced by preincubation of the nuclei with oocyte extract, followed by their reisolation and assay under standard conditions, provided that the four ribonucleotide triphosphates were present during the preincubation. The stimulatory factor(s) were mainly present in the cytoplasm of the oocyte. They produced quantitatively identical stimulations of RNA synthesis in hamster nuclei. The overall stimulatory effect of cell extracts disappears in the egg, remains absent through cleavage, but reappears at the late blastula stage. This corresponds to the changes in RNA synthesis believed to occur in early development. The extracts affect polymerases I and III, but not II to a significant extent. They also stimulate the incorporation of [γ-32P]ATP and GTP into RNA, though to a lesser extent than the incorporation of [3H]UTP. The egg extract inhibits γ-32P incorporation. There therefore seems to be some effect on the initiation of new chain synthesis, but its magnitude is uncertain, and the effect could be indirect.  相似文献   

7.
We describe the accumulation and distribution of poly (A)+RNA during oogenesis and early embryogenesis as revealed by in situ hybridization with a radio-labeled poly (U) probe. The amount of poly (A)+RNA in nurse cell cytoplasm continuously increased untill mid-vitellogenic stage (st. 10), then decreased with the rapid increase of poly (A)+RNA in the oocyte (st. 11). The localization of poly (A)+RNA at stage 10 was in the anterior region of the oocyte, where it is connected by cytoplasmic bridge to the nurse cells. These observations indicate that most of the poly (A)+RNA synthesized in the nurse cells is transferred to the oocyte through the cytoplasmic bridges at stage 10–11. During the remainder of oogenesis (st. 11–14) and during preblastodermal embryogenesis, poly (A)+RNA was evenly distributed over the cytoplasm of oocytes and embryos. At blastoderm stage, poly(A)+RNA became concentrated in the peripheral region of embryos. Though the somatic nuclei of the blastoderm contained a detectable amount of poly (A)+ RNA, the pole cell nuclei did not. The cytoplasmic RNA visualised by acridine orange staining and the poly (A)+RNA detected by hybridization with [3H]poly (U) exhibited identical distributions during oogenesis and early embryogenesis. These observations provide a basis to assess the unique distributions of specific RNA sequences involved in early development.  相似文献   

8.
The ovary of Sarcophaga lineatocollis is a typical polytrophic ovary. Each of its 25-30 ovarioles is composed of a small terminal filament, a small germarium and a vitellarium consisting of the egg follicle. The tunica propria is a noncellular, PAS-positive membrane. The ovarian follicle contains fifteen trophocytes and one oocyte. RNA is synthesized with the aid of the nuclei in the trophocyte cytoplasm, which are RNA- and PAS-positive. Protein is deposited intensively in the early stages of the trophocytes. The trophocytes of Sarcophaga lineatocollis synthesize RNA and protein more actively than the oocyte. In this fly, protein yolk precursor (PYP) bodies are supplied by the trophocyte cytoplasm to the ooplasm at an advanced stage of development. Nucleolar budding and vacuolation are observed in the trophocytes. RNA, DNA, protein and PYP bodies appear to be transported to the ooplasm from the trophocytes. Pyknotic trophocyte nuclei can be seen entering the ooplasm. The perinuclear Golgi bodies of the trophocytes help in the production and maturation of PYP bodies in the trophocytes before they are organized and passed on to the oocytes. Some RNA is contributed to the oocyte by the follicular epithelium. All these processes leading to maturation and development of the oocyte are discussed and interpreted.  相似文献   

9.
Endosymbiont transmission via eggs to future host generations has been recognized as the main strategy for its persistence in insect hosts; however, the mechanisms for transmission have yet to be elucidated. Here, we describe the dynamic locations of Rickettsia in the ovarioles and eggs during oogenesis and embryogenesis in a globally significant pest whitefly Bemisia tabaci.Field populations of the whitefly have a high prevalence of Rickettsia, and in all Rickettsia-infected individuals, the bacterium distributes in the body cavity of the host, especially in the midgut, fat body, hemocytes, hemolymph, and near bacteriocytes. The distribution of Rickettsia was subjected to dynamic changes in the ovary during oogenesis, and our ultrastructural observations indicated that the bacteria infect host ovarioles during early developmental stages via two routes:(i) invasion of the tropharium by endocytosis and then transmission into vitellarium via nutritive cord and(ii) entry into vitellarium by hijacking bacteriocyte translocation. Most of the Rickettsia are degraded in the oocyte cytoplasm in late-stage oogenesis. However, a few reside beneath the vitelline envelope of mature eggs, spread into the embryo, and proliferate during embryogenesis to sustain high-fidelity transmission to the next generation. Our findings provide novel insights into the maternal transmission underpinning the persistence and spread of insect symbionts.  相似文献   

10.
The coding activity of the messenger RNA in the ooplasm of late stage 14 (S14) oocytes of Drosophila melanogaster was analyzed by labeling the oocytes in vitro with [35S]methionine and examining the labeled products by two-dimensional gel electrophoresis and fluorography. This analysis was done both with newly formed S14 oocytes from rapidly laying females and with S14 oocytes stored for about 10 days in females that were prevented from laying. Comparison of the fluorographs showed that the proteins labeled in the newly formed oocytes were also labeled in the stored oocytes. Thus, the coding activity of S14 oocyte messenger RNA appears to remain stable during prolonged storage in utero. The oocyte proteins synthesized during oogenesis and incorporated into S14 oocytes were labeled in vivo by injecting [35S]methionine into newly eclosed females, and the S14 oocytes were removed 2 days later for gel electrophoresis and fluorography. Comparison of the fluorographs produced by the in vivo and in vitro labeling procedures showed that most of the oocyte proteins labeled in vivo were also labeled in vitro. The S14 oocytes, therefore, appear to contain messenger RNA for most of the oocyte proteins synthesized during oogenesis. There were also several additional proteins detected only in the fluorographs of the in vivo labeled oocytes; the most prominent of these were identified by immunoprecipitation tests as vitellogenin proteins of yolk granules, which are known to be synthesized outside the oocyte, in fat bodies. The occurrence of stable S14 oocyte messenger RNA for most of the oocyte proteins suggests that the synthesis of those proteins during oogenesis occurs in the developing oocytes, specified by a stable population of oocyte messenger RNA.  相似文献   

11.
The female reproductive system of the pig louse, Haematopinus suis (Insecta: Phthiraptera) is composed of paired ovaries, lateral oviducts, and a common oviduct that leads into a vagina. Clusters of mycetocytes (= cells filled with symbiotic organisms) are associated with lateral oviducts. Each ovary is composed of five loosely arranged ovarioles of the polytrophic-meroistic type. An individual ovariole is covered by a basal lamina and is composed of a terminal filament, germarium, and vitellarium. The terminal filament is composed of large, disc-shaped cells that are orientated perpendicularly to the long axis ofthe ovariole. The basal part of the terminal filament is separated from the germarium by a well-developed transverse septum. The germarium is short and filled with clusters of oogonial cells. In each cluster the cells arejoined by intercellular bridges, filled with fusomal material. Within the cluster, only one cell, the future oocyte, enters the prophase of the first meiotic division; the other cells differentiate into nurse cells. The basal part ofthe germarium is filled with the somatic prefollicular cells. The boundary between the germarium and the vitellarium is not distinct. The vitellarium contains linearly arranged ovarian follicles in subsequent stages of oogenesis (previtellogenesis, vitellogenesis and choriogenesis). Each follicle consists of an oocyte and 7 nurse cells and is surrounded by follicular cells. During oogenesis the follicular cells diversify, so that ultimately, five morphologically distinct subpopulations of these cells can be distinguished: (1) cells in contact with the nurse cells, (2) anterior cells, (3) mainbody cells, (4) posterior cells, and (5) interfollicular cells. Interestingly, the follicular cells associated with the anterior part of the oocyte, i.e. located in space at the oocyte/nurse cell border (fold cells) are mitotically active throughout previtellogenesis. It might be suggested, in this context, that the separation of the oocyte from the nurse cell compartment is brought about by mitotic divisions, consequent multiplication and centripetal migration of these cells.  相似文献   

12.
In a study of the early meiotic prophase stages of mouse oogenesis from d12 of gestation to 10d post-partum the patterns of RNA synthesis during these stages of oogenesis using H3-uridine incorporation as visualized by light microscope autoradiography are reported. We find that chromosomal RNA synthesis occurs in all stages except early to mid-pachytene, the time of maximum chromosome condensation. Diplotene and dictyate nuclei are the most heavily labelled stages. Nucleolar labelling ceases before leptotene and reappears in late pachytene or early diplotene, even though nucleoli can be identified in all stages except early to mid-pachytene.  相似文献   

13.
The changes in distribution and density of mitochondria and the level of mitochondrial RNA during Drosophila oogenesis were studied simultaneously in the 3 cell types ie follicle cells, nurse cells and oocyte, making up the egg chamber. Up to stage 6, mitochondrial density (mitochondrial and cellular areas ratio) was elevated and increased similarly in both follicle and nurse cells. Thereafter the mitochondrial density of follicle cells continued to increase and that of the nurse cells declined markedly while the nurse cell mitochondria assembled in dense groups and decreased in size. This can be related to a transfer of nurse cell cytoplasm, including mitochondria, to the oocyte. In the oocyte from stage 4 to stage 7 we observed a significant decrease of the mitochondrial density due to the absence of mitochondrial biogenesis. Then the cytoplasm transfer caused mitochondrial density to increase up to the level found in the nurse cells at the end of oogenesis. The mature oocyte contains enough mitochondria to supply 15,000 somatic cells. Our results strongly suggest that the variations in size, distribution and density of mitochondria relate to the particular energetic requirements of the different cell types during the first half of oogenesis. Later they relate to the developmental requirements of the nurse cells and the oocyte, in particular the storage of mitochondria in the oocyte. The level of mitochondrial RNA was studied through in situ hybridization. Throughout oogenesis the follicle and nurse cell RNA evolved similarly. Up to stage 9, there was no change in RNA densities in these cells, suggesting a correlation with the cell volume and/or the nuclear DNA content. Thereafter the cellular RNA concentration declined rapidly. In the oocyte the RNA concentration evolved differently especially from stage 10 to the end, the RNA density being stabilized. This can be related to the injection of nurse cell mitochondria, followed by their assignment to reserve status. Our results suggest that the mt RNA density is under extramitochondrial control mechanisms.  相似文献   

14.
奚耕思  郎东梅 《昆虫知识》2003,40(2):172-175
用孚尔根及甲基绿 -派洛宁组织化学染色法了解北京油葫芦Teleogryllusmitratus(Burmeister)卵子发生各时期阶段中卵内DNA及RNA动态变化规律。在卵子发生的最初阶段 ,核中DNA的合成和复制最活跃 ,以后便慢慢减弱 ;而RNA则在第 2阶段合成最旺盛。在卵子发生各个阶段 ,滤泡细胞中DNA ,RNA均为阳性反应 ,并在卵细胞的卵黄形成期活动旺盛 ,为卵母细胞卵黄蛋白形成提供物质基础。卵子发生第 4~ 6阶段 ,滤泡细胞开放时期 ,血淋巴内一些物质可能直接或间接通过滤泡细胞间隙进入卵母细胞内 ,参与卵母细胞的发育和构建。研究表明卵子发生初期卵母细胞的发育和物质构建主要以内源性合成积累为主 ,中后期则有外源性物质的参与。  相似文献   

15.
粗糙沼虾卵巢发育的组织学   总被引:5,自引:2,他引:3  
邓道贵  高建国 《动物学杂志》2002,37(5):59-61,F003
利用组织切片技术,对粗糙沼虾的卵子发生和卵巢发育周期进行了组织学研究。根据细胞的大小、细胞核和核仁的大小形态及卵黄积累等情况,将卵子发生划分为4个时期,卵原细胞、卵黄合成期的卵母细胞、成熟前期和成熟期。卵黄合成期的卵母细胞又可细划分为3个时期。粗糙沼虾卵巢发育具有一定的规律性。根据卵巢的大小和颜色及每种雌性生殖细胞在卵巢中所占的比例,将卵巢发育划分为7个时期。并通过卵巢发育规律的探讨,对粗糙沼虾的人工养殖提出了合理的建议。  相似文献   

16.
北京油葫芦卵黄物质形成的超微结构观察   总被引:5,自引:1,他引:4  
奚耕思  郎冬梅 《昆虫知识》2003,40(6):538-541
以蟋蟀科的北京油葫芦Teleogryllusmitratrus(Burmeister)为材料 ,对其卵子发生的卵黄物质形成过程的超微结构进行了观察。根据电镜观察结果分析 ,北京油葫芦卵黄构成有卵母细胞内部物质与外部物质参与。卵黄发生初期 ,主要以卵母细胞自身合成为主 ,随着卵母细胞发育的进行 ,有外源物质介入卵黄合成之中。它包括两部分物质来源 :一部分是由血淋巴通过滤泡细胞间隙向卵母细胞提供合成卵黄物质 ;另一部分则由滤泡细胞通过指状微绒毛以多泡小体和多片小体的形式向卵母细胞提供合成卵黄的物质。  相似文献   

17.
The poly(A)+ RNA which accumulates during oogenesis in the amphibian Xenopus laevis is shown to be functional mRNA; the RNA was active in the mRNA-dependent “shift assay” for initiation sites in the rabbit reticulocyte lysate, and was an efficient template for protein synthesis in the wheat-germ cell-free system. Analysis of the in vitro protein products showed no differences between the coding properties of poly(A)+ RNA extracted from oocytes at all stages of development from previtellogenesis to maturity. In previtellogenic oocytes, the in vitro products of polysomal and of mRNP-associated poly(A)+ RNA were also identical. Neither was there any evidence for changes in the coding properties of the poly(A)+ mRNA of the oocyte. However, the patterns of oocyte in vivo protein synthesis changed markedly during early vitellogenesis. We conclude that the mRNP-associated poly(A)+ RNA present in mature oocytes constitutes the stored maternal mRNA, and that during oogenesis the coding composition of the poly(A)+ mRNA synthesised does not change markedly, while some form of translational control operates to direct the changing pattern of protein synthesis.  相似文献   

18.
19.
The distributions of PNA binding glycoconjugates in the plasma membrane of Acrida cinerea Thunberg germ cells were detected using biotin labeled PNA, for better understanding of the formation and changes of glycoconjugates during oogenesis. The ultrastructure of vitellogenesis also was observed by electron microscopy for detection of the origin and track of vitelline material. In the ovary, PNA receptors appeared in the oocyte cytoplasm of the second phases of oogenesis; positive granules gradually increased from the third phase to the fourth, and they exhibited a maximum expression before the vitellogennic stage in the cytoplasm of the oocyte. From the vitellogennic to chorionation stage, positive granules gradually declined. Binding sites on follicle cells were changed with their morphological variation in every stage of oogenesis. The vitelline of A. cinerea formed within the oocyte by degrees. The results suggest that PNA receptors and yolk materials are synthesized by the oocytc at an early period. With the development of the oocyte, some exogeous materials from two sources act as PNA receptors and others take part in vitelline synthesis. One is blood lymph that offers some useful materials to the oocyte directly through follicle cell gaps; the other are follicle cells that produce and transmit some materials to oocyte to support vitellogenesis. In addition, PNA receptors secreted by follicle cells participate in the formation of yolk membrane [ Acta Zoologica Sinica 5 l (5) : 932 - 939, 2005 ].  相似文献   

20.
In the echiuroid worm Urechis caupo, the oocytes develop independently as single cells in the coelomic fluid. The accumulation of oocyte constituents during oogenesis was determined in different size classes of coelomic oocytes, separated by fractionation on a Ficoll density gradient. Each size class was assayed for protein, carbohydrate, RNA, microtubule protein, glucose-6-phosphate dehydrogenase, acid phosphatase, and cytochrome c oxidase. All the constituents investigated accumulated continuously during oogenesis, and the rates of accumulation paralleled the volume increase of the oocytes. The electrophoretic pattern of soluble egg proteins supported this finding. These data suggest that the genes involved in the synthesis of all the oocyte constituents studied are activated early in oogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号