首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 493 毫秒
1.
鸡基因组研究新进展   总被引:1,自引:1,他引:0  
牟彦双  李辉 《遗传》2006,28(5):617-622
鸡基因组测序草图的完成标志着禽类功能基因组时代的到来。鸡不仅是全世界广泛饲养且有重要经济价值的禽类,而且是极具生命科学研究价值的模式动物。因此,鸡基因组测序草图的完成将对遗传育种和生物学研究有重要的影响。本文综述了近年来鸡基因组研究的最新进展,主要内容包括鸡基因组的有关数据、物理图谱、遗传连锁图谱、比较基因组学、序列表达标签、生物信息学等方面所取得的成绩,同时对鸡基因组研究结果的应用前景进行了展望。  相似文献   

2.
In this paper, the current status of chicken genomics is reviewed. This is timely given the current intense activity centred on sequencing the complete genome of this model species. The genome project is based on a decade of map building by genetic linkage and cytogenetic methods, which are now being replaced by high-resolution radiation hybrid and bacterial artificial chromosome (BAC) contig maps. Markers for map building have generally depended on labour-intensive screening procedures, but in recent years this has changed with the availability of almost 500,000 chicken expressed sequence tags (ESTs). These resources and tools will be critical in the coming months when the chicken genome sequence is being assembled (eg cross-checked with other maps) and annotated (eg gene structures based on ESTs). The future for chicken genome and biological research is an exciting one, through the integration of these resources. For example, through the proposed chicken Ensembl database, it will be possible to solve challenging scientific questions by exploiting the power of a chicken model. One area of interest is the study of developmental mechanisms and the discovery of regulatory networks throughout the genome. Another is the study of the molecular nature of quantitative genetic variation. No other animal species have been phenotyped and selected so intensively as agricultural animals and thus there is much to be learned in basic and medical biology from this research.  相似文献   

3.
A draft sequence of the chicken genome will be available by early 2004. This event conveniently marks the start of the second century of poultry genetics, coming 100 years after the use of the chicken to demonstrate Mendelian inheritance in animals by William Bateson. How will the second, post-genomic century of poultry genetics differ from the first? A whole genome shotgun (WGS) approach is being used to obtain the chicken sequence, with the goal of generating approximately six-fold coverage of the genome. Bacterial artificial chromosome (BAC) and fosmid clone end sequences, along with a BAC contig map integrated with genetic linkage and radiation hybrid maps, will form the platform for assembly of the WGS data. Rapid progress in global analysis of chicken gene expression patterns is also being made. Comparative genomics will link these new discoveries to the knowledge base for all other animal species. It's hoped that the genome sequence will also provide common ground on which to unite studies of the chicken as a model species with those aimed at agriculturally-relevant applications. The current status of chicken genomics will be assessed with projections for its near and long term future.  相似文献   

4.

Background

The ChickRH6 whole chicken genome radiation hybrid (RH) panel recently produced has already been used to build radiation hybrid maps for several chromosomes, generating comparative maps with the human and mouse genomes and suggesting improvements to the chicken draft sequence assembly. Here we present the construction of a RH map of chicken chromosome 2. Markers from the genetic map were used for alignment to the existing GGA2 (Gallus gallus chromosome 2) linkage group and EST were used to provide valuable comparative mapping information. Finally, all markers from the RH map were localised on the chicken draft sequence assembly to check for eventual discordances.

Results

Eighty eight microsatellite markers, 10 genes and 219 EST were selected from the genetic map or on the basis of available comparative mapping information. Out of these 317 markers, 270 gave reliable amplifications on the radiation hybrid panel and 198 were effectively assigned to GGA2. The final RH map is 2794 cR6000 long and is composed of 86 framework markers distributed in 5 groups. Conservation of synteny was found between GGA2 and eight human chromosomes, with segments of conserved gene order of varying lengths.

Conclusion

We obtained a radiation hybrid map of chicken chromosome 2. Comparison to the human genome indicated that most of the 8 groups of conserved synteny studied underwent internal rearrangements. The alignment of our RH map to the first draft of the chicken genome sequence assembly revealed a good agreement between both sets of data, indicative of a low error rate.  相似文献   

5.
鸡基因组研究进展   总被引:7,自引:0,他引:7  
随着人类基因组计划实施而开展的动物基因组计划受到了科学界和各国政府的支持. 无论是作为一种实验用模式生物,还是作为一种农业经济动物,鸡都有着独特的生物学特性和经济学价值,因此,开展鸡基因组研究是十分有意义的. 综述了近年来鸡基因组研究(包括鸡基因组的有关参数、遗传连锁图、物理图谱、比较定位、表达序列标签和数量性状座位定位等方面)所取得的成就并对其前景进行了讨论.  相似文献   

6.
7.
Appendicularians are planktonic tunicates (urochordates), and retain a swimming tadpole shape throughout their life. Together with ascidians, they are the closest relatives of the vertebrates. Oikopleura dioica is characterized by its simplified life habit and anatomical organization. It has a tiny genome, the smallest ever found in a chordate. Its life cycle is extremely short – about 5 days – and it can be maintained in the laboratory over many generations. Embryos and adults are transparent and consist of a small number of cells. The anatomy of juveniles and adults has been described in detail. Cleavage pattern, cell lineages, and morphogenetic movements during embryogenesis have also been comprehensively documented. A draft genome sequence is now available. These features make this organism a suitable experimental model animal in which genetic manipulations would be feasible, as in Drosophila and Caenorhabditis elegans . In this review, I summarize a hundred years' knowledge on the development throughout the life cycle of this organism. Oikopleura is an attractive organism for developmental and evolutionary studies of chordates. It offers considerable promise for future genetic approaches.  相似文献   

8.
Genetic markers (microsatellites and SNPs) were used to create and compare maps of the turkey and chicken genomes. A physical map of the chicken genome was built by comparing sequences of turkey markers with the chicken whole-genome sequence by BLAST analysis. A genetic linkage map of the turkey genome (Meleagris gallopavo) was developed by segregation analysis of genetic markers within the University of Minnesota/Nicholas Turkey Breeding Farms (UMN/NTBF) resource population. This linkage map of the turkey genome includes 314 loci arranged into 29 linkage groups. An additional 40 markers are tentatively placed within linkage groups based on two-point LOD scores and 16 markers remain unlinked. Total map distance contained within linkage groups is 2,011 cM with the longest linkage group (47 loci) measuring 413.3 cM. Average marker interval over the 29 linkage groups was 6.4 cM. All but one turkey linkage group could be aligned with the physical map of the chicken genome. The present genetic map of the turkey provides a comparative framework for future genomic studies.  相似文献   

9.
The chicken has long been an important model organism for developmental biology, as well as a major source of protein with billions of birds used in meat and egg production each year. Chicken genomics has been transformed in recent years, with the characterisation of large EST collections and most recently with the assembly of the chicken genome sequence. As the first livestock genome to be fully sequenced it leads the way for others to follow--with zebra finch later this year. The genome sequence and the availability of three million genetic polymorphisms are expected to aid the identification of genes that control traits of importance in poultry. As the first bird genome to be sequenced it is a model for the remaining 9,600 species thought to exist today. Many of the features of avian biology and organisation of the chicken genome make it an ideal model organism for phylogenetics and embryology, along with applications in agriculture and medicine. The availability of new tools such as whole-genome gene expression arrays and SNP panels, coupled with information resources on the genes and proteins are likely to enhance this position.  相似文献   

10.
The chick; a great model system becomes even greater   总被引:4,自引:0,他引:4  
The chick embryo has a long and distinguished history as a major model system in developmental biology and has also contributed major concepts to immunology, genetics, virology, cancer, and cell biology. Now, it has become even more powerful thanks to several new technologies: in vivo electroporation (allowing gain- and loss-of-function in vivo in a time- and space-controlled way), embryonic stem (ES) cells, novel methods for transgenesis, and the completion of the first draft of the sequence of its genome along with many new resources to access this information. In combination with classical techniques such as grafting and lineage tracing, the chicken is now one of the most versatile experimental systems available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号