首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 520 毫秒
1.
The assignments of individual magnetic resonances of backbone nuclei of a larger protein, ribonuclease H from Escherichia coli, which consists of 155 amino acid residues and has a molecular mass of 17.6 kDa are presented. To remove the problem of degenerate chemical shifts, which is inevitable in proteins of this size, three-dimensional NMR was applied. The strategy for the sequential assignment was, first, resonance peaks of amides were classified into 15 amino acid types by 1H-15N HMQC experiments with samples in which specific amino acids were labeled with 15N. Second, the amide 1H-15N peaks were connected along the amino acid sequence by tracing intraresidue and sequential NOE cross peaks. In order to obtain unambiguous NOE connectivities, four types of heteronuclear 3D NMR techniques, 1H-15N-1H 3D NOESY-HMQC, 1H-15N-1H 3D TOCSY-HMQC, 13C-1H-1H 3D HMQC-NOESY, and 13C-1H-1H 3D HMQC-TOCSY, were applied to proteins uniformly labeled either with 15N or with 13C. This method gave a systematic way to assign backbone nuclei (N, NH, C alpha H, and C alpha) of larger proteins. Results of the sequential assignments and identification of secondary structure elements that were revealed by NOE cross peaks among backbone protons are reported.  相似文献   

2.
The assignment of the 1H, 15N, 13CO, and 13C resonances of recombinant human interleukin-4 (IL-4), a protein of 133 residues and molecular mass of 15.4 kDa, is presented based on a series of 11 three-dimensional (3D) double- and triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N/13C-labeled IL-4 with an isotope incorporation of greater than 95% for the protein expressed in yeast. Five independent sequential connectivity pathways via one-, two-, and three-bond heteronuclear J couplings are exploited to obtain unambiguous sequential assignments. Specifically, CO(i)-N(i + 1),NH(i + 1) correlations are observed in the HNCO experiment, the C alpha H(i), C alpha (i)-N(i + 1) correlations in the HCA(CO)N experiment, the C alpha(i)-N(i + 1),NH(i + 1) correlations in the HNCA and HN(CO)CA experiments, the C alpha H(i)-N(i + 1),NH(i + 1) correlations in the H(CA)NH and HN(CO)HB experiments, and the C beta H(i)-N(i + 1),NH(i + 1) correlations in the HN(CO)HB experiments. The backbone intraresidue C alpha H(i)-15N(i)-NH(i) correlations are provided by the 15N-edited Hartmann-Hahn (HOHAHA) and H(CA)NH experiments, the C beta H(i)-15N(i)-NH(i) correlations by the 15N-edited HOHAHA and HNHB experiments, the 13C alpha(i)-15N(i)-NH(i) correlations by the HNCA experiment, and the C alpha H(i)-13C alpha(i)-13CO(i) correlations by the HCACO experiment. Aliphatic side-chain spin systems are assigned by 3D 1H-13C-13C-1H correlated (HCCH-COSY) and total correlated (HCCH-TOCSY) spectroscopy. Because of the high resolution afforded by these experiments, as well as the availability of multiple sequential connectivity pathways, ambiguities associated with the limited chemical shift dispersion associated with helical proteins are readily resolved. Further, in the majority of cases (88%), four or more sequential correlations are observed between successive residues. Consequently, the interpretation of these experiments readily lends itself to semiautomated analysis which significantly simplifies and speeds up the assignment process. The assignments presented in this paper provide the essential basis for studies aimed at determining the high-resolution three-dimensional structure of IL-4 in solution.  相似文献   

3.
Nearly complete assignment of the aliphatic 1H and 13C resonances of the IIAglc domain of Bacillus subtilis has been achieved using a combination of double- and triple-resonance three-dimensional (3D) NMR experiments. A constant-time 3D triple-resonance HCA(CO)N experiment, which correlates the 1H alpha and 13C alpha chemical shifts of one residue with the amide 15N chemical shift of the following residue, was used to obtain sequence-specific assignments of the 13C alpha resonances. The 1H alpha and amide 15N chemical shifts had been sequentially assigned previously using principally 3D 1H-15N NOESY-HMQC and TOCSY-HMQC experiments [Fairbrother, W. J., Cavanagh, J., Dyson, H. J., Palmer, A. G., III, Sutrina, S. L., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1991) Biochemistry 30, 6896-6907]. The side-chain spin systems were identified using 3D HCCH-COSY and HCCH-TOCSY spectra and were assigned sequentially on the basis of their 1H alpha and 13C alpha chemical shifts. The 3D HCCH and HCA(CO)N experiments rely on large heteronuclear one-bond J couplings for coherence transfers and therefore offer a considerable advantage over conventional 1H-1H correlation experiments that rely on 1H-1H 3J couplings, which, for proteins the size of IIAglc (17.4 kDa), may be significantly smaller than the 1H line widths. The assignments reported herein are essential for the determination of the high-resolution solution structure of the IIAglc domain of B. subtilis using 3D and 4D heteronuclear edited NOESY experiments; these assignments have been used to analyze 3D 1H-15N NOESY-HMQC and 1H-13C NOESY-HSQC spectra and calculate a low-resolution structure [Fairbrother, W. J., Gippert, G. P., Reizer, J., Saier, M. H., Jr., & Wright, P. E. (1992) FEBS Lett. 296, 148-152].  相似文献   

4.
This report presents the backbone assignments and the secondary structure determination of the A domain of the Escherichia coli mannitol transport protein, enzyme-IImtl. The backbone resonances were partially assigned using three-dimensional heteronuclear 1H NOE 1H-15N single-quantum coherence (15N NOESY-HSQC) spectroscopy and three-dimensional heteronuclear 1H total correlation 1H-15N single-quantum coherence (15N TOCSY-HSQC) spectroscopy on uniformly 15N enriched protein. Triple-resonance experiments on uniformly 15N/13C enriched protein were necessary to complete the backbone assignments, due to overlapping 1H and 15N frequencies. Data obtained from three-dimensional 1H-15N-13C alpha correlation experiments (HNCA and HN(CO)CA), a three-dimensional 1H-15N-13CO correlation experiment (HNCO), and a three-dimensional 1H alpha-13C alpha-13CO correlation experiment (COCAH) were combined using SNARF software, and yielded the assignments of virtually all observed backbone resonances. Determination of the secondary structure of IIAmtl is based upon NOE information from the 15N NOESY-HSQC and the 1H alpha and 13C alpha secondary chemical shifts. The resulting secondary structure is considerably different from that reported for IIAglc of E. coli and Bacillus subtilis determined by NMR and X-ray.  相似文献   

5.
We have performed three-dimensional NMR studies on a central component of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli, denoted as HPr. The protein was uniformly enriched with 15N and 13C to overcome spectral overlap. Complete assignments were obtained for the backbone 1H, 15N and 13C resonances, using three-dimensional heteronuclear 1H NOE 1H-15N multiple-quantum coherence spectroscopy (3D-NOESY-HMQC) and three-dimensional heteronuclear total correlation 1H-15N multiple-quantum coherence spectroscopy (3D-TOCSY-HMQC) experiments on 15N-enriched HPr and an additional three-dimensional triple-resonance 1HN-15N-13C alpha correlation spectroscopy (HNCA) experiment on 13C, 15N-enriched HPr. Many of the sequential backbone 1H assignments, as derived from two-dimensional NMR studies [Klevit, R.E., Drobny, G.P. & Waygood, E.B. (1986) Biochemistry 25, 7760-7769], were corrected. Almost all discrepancies are in the helical regions, leaving the published antiparallel beta-sheet topology almost completely intact.  相似文献   

6.
The assignment of backbone resonances and the secondary structure determination of the Cys 10 Ser mutant of enzyme IIBcellobiose of the Escherichia coli cellobiose-specific phosphoenol-pyruvate-dependent phosphotransferase system are presented. The backbone resonances were assigned using 4 triple resonance experiments, the HNCA and HN(CO)CA experiments, correlating backbone 1H, 15N, and 13C alpha resonances, and the HN(CA)CO and HNCO experiments, correlating backbone 1H,15N and 13CO resonances. Heteronuclear 1H-NOE 1H-15N single quantum coherence (15N-NOESY-HSQC) spectroscopy and heteronuclear 1H total correlation 1H-15N single quantum coherence (15N-TOCSY-HSQC) spectroscopy were used to resolve ambiguities arising from overlapping 13C alpha and 13CO frequencies and to check the assignments from the triple resonance experiments. This procedure, together with a 3-dimensional 1H alpha-13C alpha-13CO experiment (COCAH), yielded the assignment for all observed backbone resonances. The secondary structure was determined using information both from the deviation of observed 1H alpha and 13C alpha chemical shifts from their random coil values and 1H-NOE information from the 15N-NOESY-HSQC. These data show that enzyme IIBcellobiose consists of a 4-stranded parallel beta-sheet and 5 alpha-helices. In the wild-type enzyme IIBcellobiose, the catalytic residue appears to be located at the end of a beta-strand.  相似文献   

7.
We have expressed [U-(13)C,(15)N]-labeled Saccharomyces cerevisiae iso-1 cytochrome c C102T;K72A in Escherichia coli with a yield of 11 mg/l of growth medium. Nuclear magnetic resonance (NMR) studies were conducted on the Fe(3+) form of the protein. We report herein chemical shift assignments for amide (1)H and (15)N, (13)C(omicron), (13)C(alpha), (13)C(beta), (1)H(alpha) and (1)H(beta) resonances based upon a series of three-dimensional NMR experiments: HNCA, HN(CO)CA, HNCO, HN(CA)CO, HNCACB, HCA(CO)N, HCCH-TOCSY and HBHA(CBCA)NH. An investigation of the chemical shifts of the threonine residues was also made by using density functional theory in order to help solve discrepancies between (15)N chemical shift assignments reported in this study and those reported previously.  相似文献   

8.
The complete sequence-specific assignment of the 15N and 1H backbone resonances of the NMR spectrum of recombinant human interleukin 1 beta (153 residues, Mr = 17,400) has been obtained by using primarily 15N-1H heteronuclear three-dimensional (3D) NMR techniques in combination with 15N-1H heteronuclear and 1H homonuclear two-dimensional NMR. The fingerprint region of the spectrum was analyzed by using a combination of 3D heteronuclear 1H Hartmann-Hahn 15N-1H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1H nuclear Overhauser 15N-1H multiple quantum coherence (3D NOESY-HMQC) spectroscopies. We show that the problems of amide NH and C alpha H chemical shift degeneracy that are prevalent for proteins of this size are readily overcome by using the 3D heteronuclear NMR technique. A doubling of some peaks in the spectrum was found to be due to N-terminal heterogeneity of the 15N-labeled protein, corresponding to a mixture of wild-type and des-Ala-1-interleukin 1 beta. The complete list of 15N and 1H assignments is given for all the amide NH and C alpha H resonances of all non-proline residues, as well as the 1H assignments for some of the amino acid side chains. This first example of the sequence-specific assignment of a protein using heteronuclear 3D NMR provides a basis for further conformational and dynamic studies of interleukin 1 beta.  相似文献   

9.
The 18.1-kDa protein IIIGlc from Escherichia coli acts as both a phosphocarrier protein in the phosphoenolpyruvate:glycose phosphotransferase system (PTS) and as a signal-transducing protein with respect to the uptake of non-PTS sugars. Phosphorylation of IIIGlc at the N epsilon (N3) position of His-90 was effected through a regeneration system that included MgCl2, DTT, excess PEP, and catalytic amounts of Enzyme I and HPr. NH, 15N, and 13C alpha signal assignments for P-IIIGlc were made through comparison of 15N-1H correlation spectra (HSQC) of uniformly 15N-labeled preparations of phosphorylated and unphosphorylated protein and through analysis of three-dimensional triple-resonance HNCA spectra of P-IIIGlc uniformly labeled with both 15N and 13C. Backbone and side-chain 1H and 13C beta signals were assigned using 3D heteronuclear HCCH-COSY and HCCH-TOCSY spectra of P-IIIGlc. Using this approach, the assignments were made without reference to nuclear Overhauser effect data or assumptions regarding protein structure. The majority of NH, 15N, H alpha, and 13C alpha chemical shifts measured for P-IIIGlc were identical to those obtained for the unphosphorylated protein [Pelton, J. G., Torchia, D. A., Meadow, N. D., Wong, C.-Y., & Roseman, S. (1991) Biochemistry 30, 10043]. Those signals that exhibited shifts corresponded to residues within four segments (1) Leu-87-Gly-100, (2) Val-36-Val-46, (3) His-75-Ser-78, and (4) Ala-131-Val-138. These four segments are in close proximity to the active site residues His-75 and His-90 in the unphosphorylated protein [Worthylake, D., Meadow, N. D., Roseman, S., Liao, D., Hertzberg, O., & Remington, S.J. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 10382], and the chemical shift data provide strong evidence that if any structural changes accompany phosphorylation, they are confined to residues in these four segments. This conclusion is confirmed by comparing NOEs observed in 3D 15N/13C NOESY-HMQC spectra of the two forms of the protein. No NOE differences are seen for residues having the same chemical shifts in IIIGlc and P-IIIGlc. Furthermore, with the exception of residues Ala-76, Asp-94, and Val-96, the NOEs of residues (in the four segments) which exhibited chemical shift differences also had the same NOEs in IIIGlc and P-IIIGlc. In the case of residues Ala-76, Asp-94, and Val-96, minor differences in NOEs, corresponding to interproton distances changes of less than 1.5 A, were observed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The application of three-dimensional (3D) heteronuclear NMR spectroscopy to the sequential assignment of the 1H NMR spectra of larger proteins is presented, using uniformly labeled (approximately 95%) [15N]interleukin 1 beta, a protein of 153 residues and molecular mass of 17.4 kDa, as an example. The two-dimensional (2D) 600-MHz spectra of interleukin 1 beta are too complex for complete analysis, owing to extensive cross-peak overlap and chemical shift degeneracy. We show that the combined use of 3D 1H-15N Hartmann-Hahn-multiple quantum coherence (HOHAHA-HMQC) and nuclear Overhauser-multiple quantum coherence (NOESY-HMQC) spectroscopy, designed to provide the necessary through-bond and through-space correlations for sequential assignment, provides a practical general-purpose method for resolving ambiguities which severely limit the analysis of conventional 2D NMR spectra. The absence of overlapping cross-peaks in these 3D spectra allows the unambiguous identification of C alpha H(i)-NH(i+1) and NH(i)-NH(i+1) through-space nuclear Overhauser connectivities necessary for connecting a particular C alpha H(i)-NH(i) through-bond correlation with its associated through-space sequential cross-peak The problem of amide NH chemical shift degeneracy in the 1H NMR spectrum is therefore effectively removed, and the assignment procedure simply involves inspecting a series of 2D 1H-1H slices edited by the chemical shift of the directly bonded 15N atom. Connections between residues can be identified almost without any knowledge of the spin system types involved, though this type of information is clearly required for the eventual placement of the connected residues within the primary sequence.  相似文献   

11.
IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system from Escherichia coli. The 1H, 15N, and 13C histidine ring NMR signals of both the phosphorylated and unphosphorylated forms of IIIGlc have been assigned using two-dimensional 1H-15N and 1H-13C heteronuclear multiple-quantum coherence (HMQC) experiments and a two-dimensional 13C-13C-1H correlation spectroscopy via JCC coupling experiment. The data were acquired on uniformly 15N-labeled and uniformly 15N/13C-labeled protein samples. The experiments rely on one-bond and two-bond J couplings that allowed for assignment of the signals without the need for the analysis of through-space (nuclear Overhauser effect spectroscopy) correlations. The 15N and 13C chemical shifts were used to determine that His-75 exists predominantly in the N epsilon 2-H tautomeric state in both the phosphorylated and unphosphorylated forms of IIIGlc, and that His-90 exists primarily in the N delta 1-H state in the unphosphorylated protein. Upon phosphorylation of the N epsilon 2 nitrogen of His-90, the N delta 1 nitrogen remains protonated, resulting in the formation of a charged phospho-His-90 moiety. The 1H, 15N, and 13C signals of the phosphorylated and unphosphorylated proteins showed only minor shifts in the pH range from 6.0 to 9.0. These data indicate that the pK alpha values for both His-75 and His-90 in IIIGlc and His-75 in phospho-IIIGlc are less than 5.0, and that the pK alpha value for phospho-His-90 is greater than 10. The results are presented in relation to previously obtained structural data on IIIGlc, and implications for proposed mechanisms of phosphoryl transfer are discussed.  相似文献   

12.
Okon M  Frank PG  Marcel YL  Cushley RJ 《FEBS letters》2001,487(3):390-396
The solution structure of an apoA-I deletion mutant, apoA-I(1-186) was determined by the chemical shift index (CSI) method and the torsion angle likelihood obtained from shift and sequence similarity (TALOS) method, using heteronuclear multidimensional NMR spectra of [u-(13)C, u-(15)N, u-50% (2)H]apoA-I(1-186) in the presence of sodium dodecyl sulfate (SDS). The backbone resonances were assigned from a combination of triple-resonance data (HNCO, HNCA, HN(CO)CA, HN(CA)CO and HN(COCA)HA), and intraresidue and sequential NOEs (three-dimensional (3D) and four-dimensional (4D) 13C- and 15N-edited NOESY). Analysis of the NOEs, H(alpha), C(alpha) and C' chemical shifts shows that apoA-I(1-186) in lipid-mimetic solution is composed of alpha-helices (which include the residues 8-32, 45-64, 67-77, 83-87, 90-97, 100-140, 146-162, and 166-181), interrupted by short irregular segments. There is one relatively long, irregular and mostly flexible region (residues 33-44), that separates the N-terminal domain (residues 1-32) from the main body of protein. In addition, we report, for the first time, the structure of the N-terminal domain of apoA-I in a lipid-mimetic environment. Its structure (alpha-helix 8-32 and flexible linker 33-44) would suggest that this domain is structurally, and possibly functionally, separated from the other part of the molecule.  相似文献   

13.
The ribosome-inactivating protein alpha-Sarcin (alpha S) is a 150-residue fungal ribonuclease that, after entering sensitive cells, selectively cleaves a single phosphodiester bond in an universally conserved sequence of the major rRNA to inactivate the ribosome and thus exert its cytotoxic action. As a first step toward establishing the structure-dynamics-function relationships in this system, we have carried out the assignment of the 1H and 15N NMR spectrum of alpha S on the basis of homonuclear (1H-1H) and heteronuclear (1H-15N) two-dimensional correlation spectra of a uniformly 15N-labeled sample, and two selectively 15N-labeled (Tyr and Phe) samples, as well as a single three-dimensional experiment. The secondary structure of alpha S, as derived from the characteristic patterns of dipolar connectivities between backbone protons, conformational chemical shifts, and the protection of backbone amide protons against exchange, consists of a long N-terminal beta-hairpin, a short alpha-helical segment, and a C-terminal beta-sheet of five short strands arranged in a + 1, + 1, + 1, + 1 topology, connected by long loops in which the 13 Pro residues are located.  相似文献   

14.
The sequential resonance assignment of the 1H and 15N NMR spectra of the DNA binding protein Ner from phage Mu is presented. This is carried out by using a combination of 1H-1H and 1H-15N two-dimensional experiments. The availability of completely labeled 15N protein enabled us to record a variety of relayed heteronuclear multiple quantum coherence experiments, thereby enabling the correlation of proton-proton through-space and through-bond connectivities with the chemical shift of the directly bonded 15N atom. These heteronuclear experiments were crucial for the sequential assignment as the proton chemical shift dispersion of the Ner protein is limited and substantial overlap precluded unambiguous assignment of the homonuclear spectra in several cases. From a qualitative interpretation of the NOE data involving the NH, C alpha H, and C beta H protons, it is shown that Ner is composed of five helices extending from residues 11 to 22, 27 to 34, 38 to 45, 50 to 60, and 63 to 73.  相似文献   

15.
A new strategy for the sequential assignment of backbone proton resonances in larger proteins involving a unique combination of four types of heteronuclear three-dimensional (3D) NMR spectroscopies is reported. This method relies on the uniform labeling of amide nitrogens with 15N and of alpha-carbons with 13C. Heteronuclear 1H-15N TOCSY-HMQC and NOESY-HMQC experiments can reveal connections between cross-peaks arising from the NHi-C alpha Hi-1 and NHi-C alpha Hi connectivities in the finger-print region in in general. They also specifically reveal the sequential amide-amide connectivities among the amide cross-peaks for the alpha-helices. Heteronuclear 1H-13C HMQC-TOCSY and HMQC-NOESY experiments can reveal connections between cross-peaks arising from the NHi-C alpha Hi and NHi+1-C alpha Hi connectivities in the finger-print region in general. The combination of the two sets of results reveals the complete unambiguous sequential connection of cross-peaks for the proton resonances in the peptide backbone. The application of the new strategy is reported for a protein, ribonuclease H, with a molecular weight of 17.6 kDa.  相似文献   

16.
Solid state NMR spectra from uniformly (13)C, (15)N enriched bacteriorhodospin (bR) purified from H. salinarium were acquired at 18.8 T using magic angle spinning methods. Isolated resonances of 2D (13)C-(13)C spectra exhibited 0.50-0.55 ppm line-widths. Several amino acid types could be assigned, and at least 12 out of 15 Ile peaks could be resolved clearly and identified based on their characteristic chemical shifts and connectivities. This study confirms that high resolution solid state NMR spectra can be obtained for a 248 amino acid uniformly labeled membrane protein in its native membrane environment and indicates that site-specific assignments are likely to be feasible with heteronuclear multidimensional spectra.  相似文献   

17.
Nearly complete sequence-specific 1H, 13C, and 15N resonance assignments are reported for the backbone atoms of the receptor-binding domain of vascular endothelial growth factor (VEGF), a 23-kDa homodimeric protein that is a major regulator of both normal and pathological angiogenesis. The assignment strategy relied on the use of seven 3D triple-resonance experiments [HN(CO)CA, HNCA, HNCO, (HCA)CONH, HN(COCA)HA, HN(CA)HA, and CBCA-(CO)NH] and a 3D 15N-TOCSY-HSQC experiment recorded on a 0.5 mM (12 mg/mL) sample at 500 MHz, pH 7.0, 45 degrees C. Under these conditions, 15N relaxation data show that the protein has a rotational correlation time of 15.0 ns. Despite this unusually long correlation time, assignments were obtained for 94 of the 99 residues; 8 residues lack amide 1H and 15N assignments, presumably due to rapid exchange of the amide 1H with solvent under the experimental conditions used. The secondary structure of the protein was deduced from the chemical shift indices of the 1H alpha, 13C alpha, 13C beta, and 13CO nuclei, and from analysis of backbone NOEs observed in a 3D 15N-NOESY-HSQC spectrum. Two helices and a significant amount of beta-sheet structure were identified, in general agreement with the secondary structure found in a recently determined crystal structure of a similar VEGF construct [Muller YA et al., 1997, Proc Natl Acad Sci USA 94:7192-7197].  相似文献   

18.
Nuclear magnetic resonance (NMR) studies of the c subunit of F1F0 ATP synthase from Escherichia coli are presented. A combination of homonuclear (1H-1H) and heteronuclear (1H-15N) 2D and 3D methods was applied to the 79-residue protein, dissolved in trifluoroethanol. Resonance assignment for all the backbone amide groups and many C alpha H side-chain protons was achieved. Analysis of inter- and intraresidue 1H-1H nuclear Overhauser effect (NOE) data and scalar coupling constant information indicates that this protein contains two extended regions of predominant alpha-helical character (residues 10-40 and 48-77) separated by an eight-residue segment which displays little evidence of ordered secondary structure. This model is consistent with information about the molecular motion of the protein deduced from 15N-1H heteronuclear NOE data and observed pKa values of carboxylic acid groups.  相似文献   

19.
1H, 13C, and 15N NMR assignments of the protein backbone of human interferon-gamma, a homodimer of 31.4 kDa, have been made using the recently introduced three-dimensional (3D) triple-resonance NMR techniques. It is shown that, despite the approximately 40-50-Hz 13C alpha and 1H alpha line widths of this high molecular weight dimer and the extensive overlap in the 1H alpha and 13C alpha spectral regions, unique sequential assignments can be made on the basis of combined use of the 3D HNCO, HNCA, HN(CO)CA, and HCACO constant-time experiments, the 15N-separated 3D NOESY-HMQC, and the 3D HOHAHA-HMQC experiments. Analysis of the 15N-separated 3D NOESY-HMQC and 13C/15N-separated four-dimensional (4D) NOESY-HMQC spectra together with the secondary C alpha and C beta chemical shifts yielded extensive secondary structure information. The NMR-derived secondary structure essentially confirms results of a recently published low-resolution crystal structure [Ealick et al. (1991) Science 252, 698-702], i.e., six helices in the monomer which are mostly alpha-helical in nature, no beta-sheets, a long flexible loop between helices A and B, and a very hydrophobic helix C. The functionally important carboxy terminus, which was not observed in the X-ray study, does not adopt a rigid conformation in solution. A high degree of internal mobility, starting at Pro-123, gives rise to significantly narrower resonance line widths for these carboxy-terminal residues compared to the rest of the protein.  相似文献   

20.
The C-terminal oligomerization domain of chicken cartilage matrix protein is a trimeric coiled coil comprised of three identical 43-residue chains. NMR spectra of the protein show equivalent magnetic environments for each monomer, indicating a parallel coiled coil structure with complete threefold symmetry. Sequence-specific assignments for 1H-, 15N-, and 13C-NMR resonances have been obtained from 2D 1H NOESY and TOCSY spectra, and from 3D HNCA, 15N NOESY-HSQC, and HCCH-TOCSY spectra. A stretch of alpha-helix encompassing five heptad repeats (35 residues) has been identified from intra-chain HN-HN and HN-H alpha NOE connectivities. 3JHNH alpha coupling constants, and chemical shift indices. The alpha-helix begins immediately downstream of inter-chain disulfide bonds between residues Cys 5 and Cys 7, and extends to near the C-terminus of the molecule. The threefold symmetry of the molecule is maintained when the inter-chain disulfide bonds that flank the N-terminus of the coiled coil are reduced. Residues Ile 21 through Glu 36 show conserved chemical shifts and NOE connectivities, as well as strong protection from solvent exchange in the oxidized and reduced forms of the protein. By contrast, residues Ile 10 through Val 17 show pronounced chemical shift differences between the oxidized and reduced protein. Strong chemical exchange NOEs between HN resonances and water indicate solvent exchange on time scales faster than 10 s, and suggests a dynamic fraying of the N-terminus of the coiled coil upon reduction of the disulfide bonds. Possible roles for the disulfide crosslinks of the oligomerization domain in the function of cartilage matrix protein are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号