首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
Despite growing concern about the potential adverse effects of elevated cobalt concentrations in the environment, hardly any toxicity data are available for terrestrial invertebrates. Therefore, chronic toxicity of cobalt was assessed for the springtail Folsomia candida. The 28-day EC50 for the reproduction of F. candida was 1480 mg Co/kg dry wt in standard artificial soil (OECD) and 409 mg Co/kg dry wt in standard field soil (LUFA 2.2). The difference in toxicity can be explained by the higher pH and cation exchange capacity which decreased cobalt bioavailability in the OECD soil. When expressed as pore water concentrations, 28-day EC50s were similar: 159 mg Co/L in OECD and 174 mg Co/L in LUFA 2.2, which corresponded with calculated Co2+ activities of 0.953 and 1.20 mmol/L, respectively. Although the presented data can be considered as a step forward in the assessment of the potential risk of cobalt in the terrestrial environment, more toxicity data for different species are needed to evaluate the environmental risk of cobalt in soils.  相似文献   

2.
The body composition of Nile tilapia (Oreochromis niloticus) collected from drainage canals in Al-Ahsa, Saudi Arabia and the concentration of four heavy metals; zinc (Zn), cadmium (Cd), cobalt (Co) and lead (Pb) in both fish muscles and the water collected from this environment were assessed across the four seasons. The body composition was found to change with the seasons, with the best body composition being recorded in autumn and winter, where higher levels of protein (17.24, 17.65%), and fat (0.58, 0.71%) and lower water content (80.15, 79.86%) respectively were noted. The concentration of heavy metals in both fish muscles and the water body also varied significantly with the seasons. In the fish muscles, the highest content of Zn (0.409 mg/kg dry weight) and Cd (4.140 mg/kg dry weight) was recorded in winter, however, the highest concentration of Co (0.318 mg/kg dry weight) and Pb (1.96 mg/kg dry weight) was observed in spring and summer respectively. On the other hand, the water samples collected in autumn showed the maximum concentration of Cd (1.385 mg/L), Co (0.762 mg/L) and Pb (0.18 mg/L) however, the maximum concentration of Zn (0.0041 mg/L) was recorded in winter. With the exception of Cd, the accumulation of the studied heavy metals in fish muscles was within the safe limits for seafood recommended by various organizations.  相似文献   

3.
溴虫腈对家蚕和桑树害虫的毒力比较   总被引:18,自引:0,他引:18  
为了比较溴虫腈在家蚕Bombyx mori和桑树害虫间的选择性毒力,采用食下毒叶法测定了溴虫腈、二嗪磷、敌敌畏、辛硫磷和三唑磷5种杀虫剂对家蚕的毒性;用浸叶法测定了5种杀虫剂对桑尺蠖Phthonandria atrilineata Butler、桑螟Diaphania pyloalis Walker和桑毛虫Porthesia xanthocampa Dyer 的毒力;在桑园喷施溴虫腈检测了其在桑树上对家蚕的残留毒性期;通过食下毒叶法系统研究了溴虫腈对家蚕生长发育的影响。结果表明,二嗪磷、敌敌畏、辛硫磷和三唑磷72 h对家蚕的毒性倍数分别大于溴虫腈的15.5、93.3、154 .0和188.5倍;溴虫腈、三唑磷、辛硫磷和敌敌畏48 h相对于二嗪磷对桑尺蠖的毒力倍数分别是49.1、3.2、2.3和1.4倍,对桑螟的毒力倍数分别是79.4、3.6、2.4和1.8倍,对桑毛虫的毒力倍数分别为67.2、3.2、2.2和1.7倍;对桑树喷施100、50、25和12.5 mg/L 溴虫腈,桑叶的残留毒性期分别为3、0、0和0天;用溴虫腈100、50、25和12.5 mg/L 处理的桑叶饲喂家蚕后,存活幼虫的历期、眠蚕体重、熟蚕体重、全茧量、茧层量、蛹重和化蛹率与对照相比均无显著性差异。据此认为溴虫腈是适合防治桑园害虫又对家蚕较安全的药剂。  相似文献   

4.
The presence of melanoidins in molasses wastewater leads to water pollution both due to its dark brown color and its COD contents. In this study, a bacterial consortium isolated from waterfall sediment was tested for its decolorization. The identification of culturable bacteria by 16S rDNA based approach showed that the consortium composed of Klebsiella oxytoca, Serratia mercescens, Citrobacter sp. and unknown bacterium. In the context of academic study, prevention on the difficulties of providing effluent as well as its variations in compositions, several synthetic media prepared with respect to color and COD contents based on analysis of molasses wastewater, i.e., Viandox sauce (13.5% v/v), caramel (30% w/v), beet molasses wastewater (41.5% v/v) and sugarcane molasses wastewater (20% v/v) were used for decolorization using consortium with color removal 9.5, 1.13, 8.02 and 17.5%, respectively, within 2 days. However, Viandox sauce was retained for further study. The effect of initial pH and Viandox concentration on decolorization and growth of bacterial consortium were further determined. The highest decolorization of 18.3% was achieved at pH 4 after 2 day of incubation. Experiments on fresh or used medium and used or fresh bacterial cells, led to conclusion that the limitation of decolorization was due to nutritional deficiency. The effect of aeration on decolorization was also carried out in 2 L laboratory-scale suspended cell bioreactor. The maximum decolorization was 19.3% with aeration at KLa = 2.5836 h−1 (0.1 vvm).  相似文献   

5.
A greenhouse study was conducted on phytoextraction of cobalt by nickel hyperaccumulators Alyssum murale and Alyssum corsicum and by two varieties of cobalt accumulator Nyssa sylvatica compared with the nonmetal accumulator crop plant Brassica juncea. The plants were grown on Sassafras sandy loam soil (<2 mg Co and 5 mg Ni/kg dry soil), amended with 1 mmol Co/kg dry soil (58.9 mg/kg), and two Ni smelter-contaminated soils, Quarry muck with 24 mg Co and 1720 mg Ni/kg dry soil and Welland loam with 37 mg Co and 2570 mg Ni/kg dry soil. All soils were adjusted to pH 6.5 to prevent Ni phytotoxicity. Of the five plant entries tested in the study, the two Alyssum species demonstrated the most promising Co phytoextraction results. In Co-amended Sassafras soil, the maximum concentration accumulated by Alyssum murale was 1320 mg Co/kg dry weight, which was almost 60 times higher than accumulation by crop plant Brassica juncea. At a single harvest after 60 days of growth, A. murale was able to extract more than 3% of Co from Co-amended soil. As expected, both Alyssum species accumulated up to 1% Ni on dry weight basis when grown on Ni-contaminated soils.

Nyssa sylvatica showed considerable Co accumulation; foliar Co concentration in the second harvest was as high as 800 mg/kg dry weight. The first few leaves that emerged were chlorotic, both in the Co-amended soil and Ni-contaminated soils, but with growth the signs of toxicity disappeared. In the Co amended soil, Co concentration in Nyssa sylvatica leaves was 30% of that found in shoots of Alyssum species, but an order of magnitude higher than that of Brassica juncea. The leaves accumulated a higher concentration compared with the stems.

Both Alyssum species and Nyssa sylvatica offer promise for phytoextraction of Co and 60Co from contaminated or mineralized soils.  相似文献   


6.
The effect of a lipase-rich fungal enzymatic preparation, produced by a Penicillium sp. during solid-state fermentation, was evaluated in an anaerobic digester treating dairy wastewater with 1200 mg of oil and grease/L. The oil and grease hydrolysis step was carried out with 0.1% (w/v) of solid enzymatic preparation at 30 °C for 24 h, and resulted in a final free acid concentration eight times higher than the initial value. The digester operated in sequential batches of 48 h at 30 °C for 245 days, and had high chemical oxygen demand (COD) removal efficiencies (around 90%) when fed with pre-hydrolyzed wastewater. However, when the pre-hydrolysis step was removed, the anaerobic digester performed poorly (with an average COD removal of 32%), as the oil and grease accumulated in the biomass and effluent oil and grease concentration increased throughout the operational period. PCR-DGGE analysis of the Bacteria and Archaea domains revealed remarkable differences in the microbial profiles in trials conducted with and without the pre-hydrolysis step, indicating that differences observed in overall parameters were intrinsically related to the microbial diversity of the anaerobic sludge.  相似文献   

7.
Incomplete denitrification and ammonia accumulation were found to cause proliferation of filamentous microorganisms in sequencing batch reactors (SBRs) for swine wastewater treatment. Foaming was observed in response to the accumulation of 115.2 and 12.2 mg/L of nitrate and ammonia, respectively. The mixed liquor suspended solids (MLSS) level in SBRs was decreased to 2,000 mg/L and the suspended solids in the effluent reached 200 mg/L when foaming appeared. However, the use of swine waste as an external carbon source for enhanced biological nitrogen removal was found to effectively control the foaming caused by filamentous microorganisms. Therefore, an optimum strategy for the addition of swine waste was designed using integrated real-time control to provide pulse input control of slurry based on the “nitrate knee” in the oxidation–reduction potential profile. In this case, the MLSS concentration was maintained at an average value of approximately 7,550 mg/L, while the SS in the effluent was less than 30 mg/L.  相似文献   

8.
This study describes the feasibility of anaerobic treatment of synthetic coal wastewater using four identical 13.5L (effective volume) bench scale hybrid up flow anaerobic sludge blanket (HUASB) reactors (R1, R2, R3 and R4) under mesophilic (27+/-5 degrees C) conditions. Synthetic coal wastewater with an average chemical oxygen demand (COD) of 2240 mg/L and phenolics concentration of 752 mg/L was used as substrate. Effluent recirculation was employed at four different effluent to feed recirculation ratios (R/F) of 0.5, 1.0, 1.5 and 2.0 for 100 days to study the effect of recirculation on the performance of the reactors. Phenolics and COD removal was found to improve with increase in effluent recirculation. An effluent to feed recycle ratio of 1.0 resulted in maximum removal of phenolics and COD. Phenolics and COD removal improved from 88% and 92% to 95% each, respectively. The concentration of volatile fatty acids in the effluent was lower than the influent when effluent to feed recirculation was employed. Effect of shock loading on the reactors revealed that phenolics shock load up to 2.5 times increase in the normal input phenolics concentration in the form of continuous shock load for 4days did not affect the reactors performance irreversibly.  相似文献   

9.
A pilot-scale hybrid hydrolysis acidification reactor (HHAR) with periodic water allocation mode operation followed by sequencing batch reactor (SBR) in anoxic and aerobic metabolic function was evaluated for the treatment of low-biodegradable combined industrial and domestic wastewater. The HHAR combines the advantages of both the UASB reactor and AF, omitting the three-phase separator. Furthermore, it has lower average up-flow velocity (0.38–0.92 m/h) and higher periodic up-flow velocity (6 m/h), which made the reactor keep higher MLSS concentration (more than 10,000 mg/L) and sludge-bed is in periodic “expansion-sedimentation-expansion” state. When HRT less than 10 h, the B/C variation was positive and reached the maximum value of 0.07 at 8 h. SBR with a total cycle period of 4.5 h was applied as the post-treatment process to remove residual COD, NH3-N and TN. At steady stage, the pilot-scale SBR effluent COD, NH3-N and TN concentration was 65, 0.75 and 17.71 mg/L, corresponding in this case to full-scale SBR plant effluent was 93, 16.4 and 34 mg/L. Comparison results indicated that the application of HHAR–SBR system to treat combined industrial and domestic wastewater can improve effluent quality significantly.  相似文献   

10.
桑-蚕系统中镉的吸收、累积与迁移   总被引:9,自引:0,他引:9  
对桑-蚕系统中镉的吸收,累积与迁移行为研究结果表明:(1)桑树对土壤镉污染有一定的耐性,桑树镉累积量和相对累积率与土壤镉浓度的关系可分别用回归方程Ta=a+blog(Sc)和log(Ra)=a+blog(Sc)描述。(2)随着土壤镉浓度的增加,镉在桑树根部的分布率明显增加,地上部分的分布率有所降低,运转到叶片的比率明显降低。(3)蚕体,蚕砂和蚕茧的镉含量,镉累积量,随着桑叶镉含量的增加而增加。  相似文献   

11.
Wu S  Yue Q  Qi Y  Gao B  Han S  Yue M 《Bioresource technology》2011,102(3):2296-2300
Novel media-ultra-lightweight sludge ceramics (ULSC) employed in an upflow lab-scale biological aerobic filter (BAF) were investigated for pharmaceutical advanced wastewater treatment. The influences of the volume ratio of pharmaceutical wastewater to domestic wastewater (PW/DW), hydraulic retention time (HRT) and air-liquid ratio (A/L) on chemical oxygen demand (CODCr) and ammonium (NH(4)(+)-N) of the effluent were investigated. When PW/DW of 4:1, HRT of 6 h, and A/L of 5:1 were applied, the mean effluent concentration of NH(4)(+)-N was 6.2 mg L(-1), and the maximum CODCr concentration in the effluent was 96 mg L(-1). Both NH(4)(+)-N and CODCr did not exceed the limits of the national discharge standards (NH(4)(+)-N ≤ 15 mg L(-1), CODCr ≤ 100 mg L(-1)). In addition, the BAF system showed a strong capacity of further removal from NH(4)(+)-N of the effluent.  相似文献   

12.
文章探究了2株毛枝藻(Stigeoclonium sp.)SHY-370及HB1617在不同初始氨氮浓度以及不同氮磷比条件下的生长情况与氮磷去除能力。结果表明氨氮浓度对2株毛枝藻的生长及TP去除能力均有一定的影响, SHY-370可耐受最大氨氮浓度为10 mg/L, HB1617为5 mg/L;氨氮浓度为1—10 mg/L时SHY-370及HB1617对其去除率均达到97%以上,最大去除速率为3.98 mg/(L·d)。氮磷比对SHY-370的生长影响不大,但在氮磷比大于20时HB1617的生长受到抑制; SHY-370对NO_3~--N去除的最佳氮磷比为10—40, HB1617为2—10;氮磷比为2时水体中TP的含量超过了SHY-370及HB1617所能去除的最大值,去除率较低。实验结果表明SHY-370及HB1617在污水深度脱氮除磷方面具有一定的潜力,可考虑将其应用于城市生活污水二级出水(TN≤15 mg/L、TP≤0.5 mg/L、 NH_4~+-N≤5 mg/L)的深度处理。  相似文献   

13.
Biohydrogen production by Nostoc linckia HA-46, isolated from a textile-industry oxidation-pond was studied by varying light/dark period, pH, temperature and ratio of carbon-dioxide and argon in the gas-mixture. Hydrogen production rates were maximum under 18 h of light and 6 h of darkness, pH 8.0, 31°C, a CO(2):Ar ratio 2:10. Hydrogen production of the strain acclimatized to 20 mg/L of chromium/cobalt and 100 mg/L of Reactive red 198/crystal violet dye studied in N-supplemented/deficient medium was 6-10% higher in the presence of 1.5 g/L of NaNO(3). Rates of hydrogen production in the presence of dyes/metals by the strain (93-105 μmol/h/mg Chlorophyll) were significantly higher than in medium without metals/dyes serving as control (91.3 μmol/h/mg Chlorophyll). About 58-60% of the two metals and 35-73% of dyes were removed by cyanobacterium. Optimal conditions of temperature, pH and metals/dyes concentration for achieving high hydrogen production and wastewater treatment were found practically applicable as similar conditions are found in the effluent of regional textile-mills.  相似文献   

14.
The treatment of acidic (pH 6.5–3), sulfate- (2–3 g/L), Zn- and Cu- (total metal 0–500 mg/L) containing wastewater was studied in a four-stage anaerobic baffled reactor (ABR) at 35 °C for 250 days. Ethanol was supplemented (COD/SO4 2− = 0.67) as carbon and electron source for sulfate reducing bacteria. Sulfate reduction, COD oxidation and metal precipitation efficiencies were 70–92, 80–94 and >99%, respectively. The alkalinity produced from sulfidogenic ethanol oxidation increased the wastewater pH from 3.0 to 7.0–8.0. The electron flow from organic oxidation to sulfate averaged 87%. Decreasing feed pH to 3 and increasing total metal concentrations to 500 mg/L did not adversely affect the performance of ABR and sufficient alkalinity was produced to increase the effluent pH to neutral values. More than 99% of metals were precipitated in the form of metal-sulfides. Accumulation of precipitated metals in the first compartment allowed metal recovery without disturbing reactor performance seriously.  相似文献   

15.
This study aimed to assess the acute toxicity of raw and treated wastewater generated by the rice parboiling industry using zebrafish (Danio rerio) sperm quality as a bioindicator. Toxicity bioassays were conducted comparing physicochemical parameters of sperm quality for zebrafish at sublethal conditions (n = 150 fish, 50 per treatment). Acute toxicity was detected in all sperm quality parameters assessed for both raw and treated wastewater, when contrasted to the control (p < 0.05). For zebrafish exposed to raw effluent, negative correlations with parameters of sperm quality were observed for the concentration of iron, phosphorus and total suspended solids (p < 0.05). Salinity, the biochemical oxygen demand and the concentration of total suspended solids were negatively correlated with parameters of sperm quality for zebrafish exposed to treated effluent (p < 0.05). In comparison with the levels observed for the raw effluent, most physicochemical parameters of the treated effluent were reduced to levels within the limits required by the environmental legislation. Despite the physical and chemical parameters measured in the treated wastewater meeting environmental legislation thresholds, acute toxicity persisted. These results show that the sperm quality can be used as a bioindicator for wastewater toxicity and release of wastewater to surface water could affect the fertility of fishes.  相似文献   

16.
The dispersion of nitrogenous compounds and heavy metals into the environment is frequent during mining activities. The effects of nickel (Ni) and cobalt (Co) on denitrification of simulated mine waters were investigated in batch bioassays and fluidized-bed reactors (FBRs). At pH 7, batch tests revealed that Co did not exhibit inhibition on denitrification even at 86.6 mg/L. Ni showed to be inhibitory at 50 and 100 mg/L by decreasing nitrate removal efficiencies of 18 and 65 %, respectively. In two FBRs, operated at 7–8 and 22 °C, 5.5 mg/L Ni did not affect nitrate and nitrite removals because of FBR potential of diluting soluble Ni feed concentration. On the contrary, the effluent pH clearly decreased in both FBR1 and FBR2 because of nickel sulfide precipitation and Ni inhibition of the last two steps of denitrification. When Ni injection was stopped, the process recovered more slowly at 22 than 7–8 °C. This is the first study reporting the effect of Ni on denitrification in biological FBRs.  相似文献   

17.
The performance of an intermittently aerated sequencing batch reactor (IASBR) technology was investigated in achieving partial nitrification, organic matter removal and nitrogen removal from separated digestate liquid after anaerobic digestion of pig manure. The wastewater had chemical oxygen demand (COD) concentrations of 11,540 ± 860 mg/L, 5-day biochemical oxygen demand (BOD5) concentrations of 2,900 ± 200 mg/L and total nitrogen (TN) concentrations of 4,041 ± 59 mg/L, with low COD:N ratios (2.9) and BOD5:COD ratios (0.25). Synthetic wastewater, simulating the separated digestate liquid with similar COD and nitrogen concentrations but BOD5 of 11,500 ± 100 mg/L, was also treated using the IASBR technology. At a mean organic loading rate of 1.15 kg COD/(m3 d) and a nitrogen loading rate of 0.38 kg N/(m3 d), the COD removal efficiency was 89.8% in the IASBR (IASBR-1) treating digestate liquid and 99% in the IASBR (IASBR-2) treating synthetic wastewater. The IASBR-1 effluent COD was mainly due to inert organic matter and can be further reduced to less than 40 mg/L through coagulation. The partial nitrification efficiency of 71–79% was achieved in the two IASBRs and one cause for the stable long-term partial nitrification was the intermittent aeration strategy. Nitrogen removal efficiencies were 76.5 and 97% in IASBR-1 and IASBR-2, respectively. The high nitrogen removal efficiencies show that the IASBR technology is a promising technology for nitrogen removal from low COD:N ratio wastewaters. The nitrogen balance analysis shows that 59.4 and 74.3% of nitrogen removed was via heterotrophic denitrification in the non-aeration periods in IASBR-1 and IASBR-2, respectively.  相似文献   

18.
A pilot scale experiment was performed for a year to develop a two-phase anaerobic process for piggery wastewater treatment (COD: 6,000 mg/L, BOD: 4,000 mg/L, SS: 500 gm/L, pH 8.4, alkalinity 6,000 mg/L). The acidogenic reactor had a total volume of 3 m3, and the methanogenic reactor, an, anaerobic up-flow sludge filter, combining a filter and a sludge bed, was also of total volume 3 m3 (1.5 m3 of upper packing material). Temperatures of the acidogenic and methanogenic reactors kept at 20°C and 35°C., respectively. When the pH of the acidogenic reactor was controlled at 6.0–7.0 with HCl, the COD removal efficiency increased from 50 to 80% over a period of six months, and as a result, the COD of the final effluent fell in the range of 1,000–1,500 mg/L. BOD removal efficiency over the same period was above 90%, and 300 to 400 mg/L was maintained in the final effluent. The average SS in the final effluent was 270 mg/L. The methane production was 0.32 m3 CH4/kg CODremoved and methane content of the methanogenic reactor was high value at 80–90%., When the pH of the acidogenic reactor was not controlled over the final two months, the pH reached 8.2 and acid conversion decreased compared with that of pH controlled, while COD removal was similar to the pH controlled operation. Without pH control, the methane content in the gas from methanogenic reactor improved to 90%, compared to 80% with pH control.  相似文献   

19.
以合成废水为基质,研究了采用硫酸盐还原-甲烷化两相厌氧新型工艺处理含高浓度硫酸盐有机废水的系统运行工艺条件.结果表明,酸化-硫酸盐还原反应器的适宜pH为6.5-7.0;500mg/l的S~(2-)使SRB的硫酸盐还原活性下降;208mg/l的[H_2S]_L抑制MPB活性的95.4%;推导出估算气提塔出水回流比R的模型;以得到的工艺条件为依据处理了含19200mg/1的SO_4~(2-)和29400mg/l COD的味精废水.  相似文献   

20.
An integrated system for the biotreatment of acidic wastewaters containing both toxic metals and organics is presented. It consists of two bioprocess stages (i) an anaerobic, SRB stage (containing alkaline‐tolerant s ulfate‐ r educing b acteria) that at pH 8 (chosen to acclimatize the bacteria in the biomedium) produces high concentrations of total sulfide ions (more than 400 mg/L) which are added to the wastewater to precipitate the heavy metals out at pH 2 as metal sulfides, and (ii) an aerobic, acidophilic stage containing heterotrophic bacteria (WJB3) that degrade organic xenobiotics. The anaerobic system was comprised of a 4‐L fluidized bed bioreactor with immobilized SRB, a mixing tank, and a precipitation tank. The effluent from the bioreactor with a high concentration of sulfide ions was fed into a mixing tank where model wastewaters containing toxic metals and phenol at pH 2 were also fed at increasing loading rates until free metal ions could be detected in the precipitation tank outlet. Then the effluent from the precipitation tank outlet was fed into a 2.5‐L aerobic bioreactor in which phenol was degraded. In this research, 100 % removal efficiencies were obtained with wastewaters containing more than 400 mg/L metal ions and 900 mg/L phenol at a 6‐h HRT of the mixing tank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号