首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The requirement to mitigate impacts to wetlands and streams is a frequently misunderstood policy with a long and complicated history. We narrate the history of mitigation since the inception of the Clean Water Act Section 404 permit program in 1972, through struggles between the US Environmental Protection Agency and the US Army Corps of Engineers, through the emerging importance of wetland conservation on the American political landscape, and through the rise of market-based approaches to environmental policy. Mitigation, as it is understood today, was not initially foreseen as a component of the Section 404 permitting program, but was adapted from 1978 regulations issued by the Council on Environmental Quality as a way of replacing the functions of filled wetlands where permit denials were unlikely. EPA and the Corps agreed in 1990 to define mitigation as the three steps of avoidance, minimization, and compensation, principles which must be applied to permit decisions in the form of the environmental criteria in EPA’s 404(b)(1) Guidelines. Through the 1980s and 1990s, the compensation component of mitigation has become nearly the sole focus of mitigation policy development, and has been the subject of numerous guidance documents and memoranda since 1990. Avoidance and minimization have received far less policy attention, and this lack of policy development may represent a missed opportunity to implement effective wetland conservation.
Morgan RobertsonEmail:
  相似文献   

2.
Wetland banking has been discussed in the policy literature mainly at a high level of abstraction, using economic models or generic examples to illustrate the concepts and tensions within wetland banking. This article illustrates two cases of wetland bank creation in-depth using the methodology of the extended case study, following the process from the initiation of interest in forming a bank through to the approval of credits for sale. The close attention to actual cases serves to move discussion beyond the goodness of models or the supposed rationality of economic actors, towards a consideration of actual market participants in complex situations. Successful wetland credit producers must negotiate a number of different economic, political, interpersonal, and ecological forces which impact their project from a number of different scales. While no optimal solution to this complexity is likely to be reached that is generalizable, the use of entrepreneurial wetland banking as a market-based policy may expand where skillful bankers and regulators together arrive at adequate solutions that are matched to the specificity of their contexts.
Morgan RobertsonEmail:
  相似文献   

3.
A primary challenge of animal surveys is to understand how to reliably sample populations exhibiting strong spatial heterogeneity. Building upon recent findings from survey, tracking and tagging data, we investigate spatial sampling of a seasonally resident population of Atlantic bluefin tuna in the Gulf of Maine, Northwestern Atlantic Ocean. We incorporate empirical estimates to parameterize a stochastic population model and simulate measurement designs to examine survey efficiency and precision under variation in tuna behaviour. We compare results for random, systematic, stratified, adaptive and spotter-search survey designs, with spotter-search comprising irregular transects that target surfacing schools and known aggregation locations (i.e., areas of expected high population density) based on a priori knowledge. Results obtained show how survey precision is expected to vary on average with sampling effort, in agreement with general sampling theory and provide uncertainty ranges based on simulated variance in tuna behaviour. Simulation results indicate that spotter-search provides the highest level of precision, however, measurable bias in observer-school encounter rate contributes substantial uncertainty. Considering survey bias, precision, efficiency and anticipated operational costs, we propose that an adaptive-stratified sampling alone or a combination of adaptive-stratification and spotter-search (a mixed-layer design whereby a priori information on the location and size of school aggregations is provided by sequential spotter-search sampling) may provide the best approach for reducing uncertainty in seasonal abundance estimates.
Nathaniel K. NewlandsEmail:
  相似文献   

4.
We examined two types of groundwater-fed wetlands (riparian depressions and slopes) classified using the hydrogeomorphic (HGM) system. These wetland types had previously been shown to differ hydrologically. Our first objective was to determine if HGM was a useful structuring variable when examining aboveground decomposition dynamics (rate of mass loss and rate of nitrogen loss). Our second objective was to determine what soil variables were related to any differences in aboveground decomposition dynamics we might find regardless of HGM subclass. We used the litterbag field bioassay technique, and employed a standard litter type (Phalaris arundinacea) across all wetlands. Our results indicated that HGM would not readily serve as an adequate structuring variable for aboveground decomposition in riparian depressions and slope wetlands of central Pennsylvania. Discriminant analysis and classification and regression tree (CART) modeling found soil cation exchange capacity, soil pH, soil organic matter, and soil % nitrogen to be potentially important soil variables related to mass loss, and soil % nitrogen and soil pH to be potentially important variables related to nitrogen loss rate.  相似文献   

5.
Demand for data on the ecological condition of wetlands is increasing as state and federal management programs recognize its value in reporting on the ambient condition of the resource, targeting restoration and protection efforts, evaluating the effects of mitigation and restoration practices, supporting regulatory decisions, and tracking the impact of land use decisions. We developed an approach for generating a single measure of wetland condition from ecological variables used in hydrogeomorphic (HGM) assessment. An Index of Wetland Condition (IWC) was developed from HGM field data collected to assess freshwater, non-tidal flat, riverine, and depression wetlands in the Nanticoke River watershed. The HGM variables were screened and scored based on a range check, responsiveness, and metric redundancy, employing a method used to develop indices of biotic integrity. Weights of the individual variables were adjusted to reflect our understanding of wetland ecology and to include variables that represented the vegetation, hydrology, and buffer of a wetland. The final IWC score discriminated high, medium, and low site disturbance classes in flat and riverine wetlands and high and low disturbance classes in depressions, one-way ANOVA F-values ranged from 44.5 to 79.1 (all p <0.0001). The combination of the IWC and HGM assessments provides a comprehensive evaluation of the wetland resource. HGM produces information on specific wetland functions. The IWC concisely conveys the ecological condition of the resource and maximizes the utility of the data collected in an HGM assessment.  相似文献   

6.
1. The ’hydrogeomorphic‘ approach to functional assessment of wetlands (HGM) was developed as a synthetic mechanism for compensatory mitigation of wetlands lost or damaged by human activities. The HGM approach is based on: (a) classification of wetlands by geomorphic origin and hydrographic regime (b) assessment models that associate variables as indicators of function, and (c) comparison to reference wetlands that represent the range of conditions that may be expected in a particular region. In this paper, we apply HGM to riparian wetlands of alluvial rivers. 2. In the HGM classification, riverine wetlands are characterized by formative fluvial processes that occur mainly on flood plains. The dominant water sources are overbank flooding from the channel or subsurface hyporheic flows. Examples of riverine wetlands in the U.S.A. are: bottomland hardwood forests that typify the low gradient, fine texture substratum of the south-eastern coastal plain and the alluvial flood plains that typify the high gradient, coarse texture substratum of western montane rivers. 3. Assessment (logic) models for each of fourteen alluvial wetland functions are described. Each model is a composite of two to seven wetland variables that are independently scored in relation to a reference data set developed for alluvial rivers in the western U.S.A. Scores are summarized by a ’functional capacity index‘ (FCI), which is multiplied by the area of the project site to produce a dimensionless ’functional capacity unit‘ (FCU). When HGM is properly used, compensatory mitigation is based on the FCUs lost that must be returned to the riverine landscape under statutory authority. 4. The HGM approach also provides a framework for long-term monitoring of mitigation success or failure and, if failing, a focus on topical remediation. 5. We conclude that HGM is a robust and easy method for protecting riparian wetlands, which are critically important components of alluvial river landscapes.  相似文献   

7.
In Australia and many countries worldwide environmental flows are becoming an increasingly popular tool for reducing the negative impacts of river regulation. However, there are many factors that restrict the effectiveness of these flows such as thermal pollution, existing physical infrastructure and the limited volume of water available. Since environmental flows result in reduced water allocations for irrigators, the aim of the present study was to investigate whether irrigators’ attitudes towards environmental flows for wetlands are influenced by the effectiveness of these flows. Three focus groups were used to engage with farmers in the Murrumbidgee Catchment, eastern Australia. A simulation model of the Murrumbidgee River was created to provide focus groups with a tool for examining the effectiveness of wetland-watering releases and exploring alternative management scenarios. The results showed that participants support the principle of environmental flows for wetlands. However, they believed that the flows could be more effective if the restrictions imposed by physical infrastructure were removed. They also suggested that the volume of translucency releases should be lowered, as these flows reduce the amount of water available for wetlands and lower early season allocations for general-security water users. The participants provided numerous suggestions for altering the management of water resources so that both the Mid Murrumbidgee Wetlands and farmers would benefit.
Sonia GrahamEmail:
  相似文献   

8.
Service providers and their customers agree on certain quality of service guarantees through Service Level Agreements (SLA). An SLA contains one or more Service Level Objectives (SLO)s that describe the agreed-upon quality requirements at the service level. Translating these SLOs into lower-level policies that can then be used for design and monitoring purposes is a difficult problem. Usually domain experts are involved in this translation that often necessitates application of domain knowledge to this problem. In this article, we propose an approach that combines performance modeling with regression analysis to solve this problem. We demonstrate that our approach is practical and that it can be applied to different n-tier services. Our experiments show that for a typical 3-tier e-commerce application in a virtualized environment, the SLA can be met while improving CPU utilization by up to 3 times.
Yuan ChenEmail:
  相似文献   

9.
10.
The integration of multiple predictors promises higher prediction accuracy than the accuracy that can be obtained with a single predictor. The challenge is how to select the best predictor at any given moment. Traditionally, multiple predictors are run in parallel and the one that generates the best result is selected for prediction. In this paper, we propose a novel approach for predictor integration based on the learning of historical predictions. Compared with the traditional approach, it does not require running all the predictors simultaneously. Instead, it uses classification algorithms such as k-Nearest Neighbor (k-NN) and Bayesian classification and dimension reduction technique such as Principal Component Analysis (PCA) to forecast the best predictor for the workload under study based on the learning of historical predictions. Then only the forecasted best predictor is run for prediction. Our experimental results show that it achieved 20.18% higher best predictor forecasting accuracy than the cumulative MSE based predictor selection approach used in the popular Network Weather Service system. In addition, it outperformed the observed most accurate single predictor in the pool for 44.23% of the performance traces.
Renato J. FigueiredoEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号