首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The thermo-/hygrosensitive sensilla styloconica of the silk moth Bombyx mori were studied using cryofixation and freez-substitution. These sensilla are characterized by a short poreless cuticular peg, which is double-walled in its distal part. The central lumen is innervated by the unbranched outer dendritic segments of the two presumed hygroreceptor cells. The presumed thermoreceptor cell displays lamellae below the peg base. Within the peg lumen, the dendrites are surrounded by the peridendritic dense coat and the lowdensity matrix. Below the peg base, these structures continue as the dendrite sheath, which is separated from the outer sensillum-lymph space by a layer of the trichogen cell. The central lumen, therefore, is only connected with the inner sensillum-lymph space, but the appearance of the low-density matrix, within the peg, differs from that of the sensillum lymph below the peg. In moist-adapted (24 h) sensilla, the two hygroreceptor dendrites invade the peg for three quarters and one half of its length, respectively, and fill the cross-sectional area of the lumen by 50–80%. In dry-adapted (24 h) sensilla, the dendrites terminate more proximally and fill the cross-section by 35%. The volume of the low-density matrix increases under dry conditions and decreases under humid conditions. At intermediate ambient humidity, the morphology of these sensilla is halfway between the dry-adapted and the moist-adapted state. The effect of dry-adaptation is reversible, so that sensilla that were first dry-adapted and then moist-adapted (24 h each) before cryofixation cannot be distinguished from moist-adapted sensilla. The reduction of the exposed length of the dendrites is interpreted as a shift of the working range of the receptors and/or protection against desiccation. The current theories of sensory transduction in hygroreceptors, in particular the hygrometer and evaporimeter hypotheses, are discussed with respect to the present findings.  相似文献   

2.
Poreless sensilla with inflexible sockets   总被引:2,自引:0,他引:2  
Poreless sensilla (np-sensilla) on the antennae of 18 species from 9 insect orders, and on the maxillary palps of Periplaneta americana were investigated using chemo- and cryofixation. The number of np-sensilla is low. Common features of these sensilla are: (a) the presence of a peg, (b) the lack of pores that lead to the dendritic outer segments (DOS), (c) the lack of socket structures, which would indicate flexibility, and (d) the presence of three types of sensory cells. The type-1 sensory cells are characterized by large DOS, which proceed into the peg where they fit tightly to its wall. As a rule, two DOS are present, being arranged in bilateral symmetry. Within them, in two species, a pattern of microtubules similar to that of a tubular body was observed. In the type-2 sensory cells, the DOS end beneath the peg and mostly display membrane invaginations. In the type-3 sensory cell, the DOS is an unmodified 9 X 2 + 0 cilium. Electrophysiological investigation of the np-sensillum in the maxillary palp of Periplaneta showed the presence of a hygro- and/or thermoreceptor. In a comparison of np-sensilla with an inflexible socket in different insect species, it is shown that these sensilla represent one fundamental sensillum type and that their structural features can be regarded as adaptations to hygro- and thermoreception.  相似文献   

3.
Summary The thermo/hygroreceptive sensilla styloconica of the silkmoths Bombyx mori, Antheraea pernyi, and A. polyphemus were reconstructed from serial sections of cryofixed and chemically fixed specimens. The volume and surface area of the different sensillar cells were calculated from the area and circumference of consecutive section profiles. In addition, data are provided on the length and diameter of the outer and inner dendritic segments of the receptor cells. The morphometric data obtained from the three species are highly consistent and significantly different from those of olfactory sensilla trichodea of the same species. In each sensillum two type-1 receptor cells (hygroreceptors) are associated with one type-2 cell with a lamellated outer dendritic segment, a comparatively thick inner dendritic segment, and a particularly large soma (thermoreceptor). In contrast to olfactory sensilla, the thecogen cell is the largest auxiliary cell forming an extensive apical labyrinth bordering the inner sensillum-lymph space, whereas an inconspicuous trichogen cell and a medium-sized tormogen cell border a comparatively small outer sensillum-lymph cavity. Moreover, both sensillum-lymph spaces are separated from each other not only by the dendrite sheath, but also by the trichogen cell. The results are discussed with regard to recent electrophysiological observations and current hypotheses on the function of sensilla.  相似文献   

4.
The fine structure of the digitiform sensilla on the distal segment of the maxillar palps of Tenebrio and Dermestes is described. Each sensillum is associated with a single sensory cell and three enveloping cells, which enclose two receptor lymph cavities. The inner receptor lymph cavity of both species shows a different structural feature. Branches of the outer dendritic segments, which contain numerous microtubules, run to the tip of the hairshaft. A dendritic sheath extends to the apex of the peg. The hairshaft possesses a second canal, which is free of dendrites. The poreless hairshaft is inserted in a cuticular canal; the longer distal part of the shaft is positioned in a narrow superficial groove. The digitiform sensilla do not show the typical structures of mechanosensitive sensilla. The absence of pores in the setal wall does not point to a function as olfactory or gustatory hairs. The presumed function of the sensilla is discussed in relation to thermo-, hygro- and CO2-receptors.  相似文献   

5.
Summary A sensillum in a narrow pit with a broad cuticular collar, located in a sensillum field on the 12th segment of the antennae of Carausius morosus, was investigated electrophysiologically. After marking, it was also examined with the transmission and the scanning electron microscopes. The number of sensory cells within the sensillum varies between three and four. One cell, present in half of the sensilla studied, exhibits a simple cilium of the 9×2+0 type as outer dendritic segment. The outer segment of a second unit is noteworthy in that it divides near its ciliary base into two branches. These flatten to form lamellae, then fold and wrap around each other. The remaining two sensory cells bear unbranched or bifurcate outer segments which contain densely packed microtubules. Only these outer segments extend into the cuticular peg; the others end beneath its base. The cuticular peg is devoid of pore systems. Electrophysiological recording yielded evidence that a cold, a dry and a moist air receptor are present. The fourth unit did not respond clearly to stimulation.Supported by the Deutsche Forschungsgemeinschaft (Al 56/6)Research Fellow of the Alexander von Humboldt Foundation  相似文献   

6.
Summary The morphogenesis of the thermo- and hygro-sensitive sensilla styloconica of Antheraea pernyi was studied, exclusively by cryomethods, during the second half of pupal development. The three major processes taking place during this period are (1) the differentiation of the dendritic outer segments of the sensory cells, especially of the lamellated type-2 receptor, (2) the formation of the receptor-lymph cavities, (3) the formation of tubular structures of unknown function in the inner receptor-lymph cavity, and (4) the elongation of the dendrite sheath. The formation of lamellae in the type-2 dendritic outer segment is achieved by the enfolding of its originally cylindrical cytoplasmic membrane. Autocellular junctions, previously described in the sensilla of adult animals, are found to join the forming lamellae. Close similarities between the junctions and smooth septate junctions are demonstrated. Both the extensive inner and outer receptor-lymph cavities are formed by invagination and folding of the apical cytoplasmic membranes of the three enveloping cells. Formation starts at the most apical projection of the cells and proceeds in a proximal direction. Up to 4-m-long tubular structures appear, exclusively in developmental stages, in the inner receptor-lymph cavity. They are composed of plasma membranes whose inner surface is studded with regularly spaced electron-dense particles. Contacts with the cytoplasmic membrane of the innermost enveloping cell demonstrate that the structures are composed of lipid membranes. During elongation of the dendrite sheath, which in these sensilla is apically attached to the hair wall, an 2-m-long growth-zone is observed at its proximal end. By addition of sheath-forming material to the growth-zone, the latter continuously moves proximally until the sheath is completed.  相似文献   

7.
Summary In an attempt to identify and localize the components of voltage sources involved in sensory transduction in insect sensilla, the thermo-/hygrosensitive sensilla of the moth Antheraea pernyi were probed with a polyclonal antiserum against Na+,K+-ATPase in cryofixed and freeze-substituted preparations. The antiserum recognized epitopes on the cytoplasmic membranes of the dendritic inner segments and somata of the sensory cells and also on the cytoplasmic membranes of glial cells surrounding the initial axon segments. The findings support the current concept that ion pumps in the cytoplasmic membranes of the dendritic inner segments and somata of the sensory cells contribute to the maintenance of the resting potential of the sensory cells and to the driving forces generating the receptor currents in response to stimulation of the sensillum. Morphological features and immunohistochemical characteristics of the region of the initial axon segment are also discussed with respect to the initiation of action potentials in these sensilla.  相似文献   

8.
Summary Poreless sensilla with inflexible sockets in insects presumably house hygro- and thermoreceptors (type-1, type-2 receptors). The dendritic outer segments of these receptor cells were studied mainly in cryofixed antennae of two species of moth (Antheraea pernyi, A. polyphemus) and one beetle (Aleochara curtula). As a rule two type-1 receptor cells are present. Their dendritic outer segments do not branch. They project into the distal cuticular parts of the sensillum and are in close contact with its four-layered wall. The segments differ in shape and microtubule density. As well, in A. curtula, the microtubules are interconnected by electron-dense material for some distance, thus forming a tubular body-like structure of 1.3 m length. The dendritic outer segment of the single type-2 receptor cell is branched and lamellated. Its lamellae are connected by structures similar to septate junctions, which occupy about 70% of the total surface of the lamellated portion of the dendrite. In tangential sections, the septa appear as parallel strands approximately perpendicular to the long axis of the dendritic segment. The structure of type-1 receptors is discussed with regard to the hypothesis for a mechano-electrical transduction. The possible functions of lamellation and junctional connections in type-2 receptors are discussed.Supported by the Deutsche Forschungsgemeinschaft (SFB 4/G1)  相似文献   

9.
Summary The structure and embryonic development of the two types (A, B) of basiconic sensilla on the antennae of Locusta migratoria were studied in material that had been cryofixed and freeze-substituted, or chemically fixed and dehydrated. Both types are single-walled wall-pore sensilla. Type-A sensilla comprise 20–30 sensory and 7 enveloping cells. One enveloping cell (thecogen cell secretes the dendrite sheath); four are trichogen cells, projections of which form the trichogen process during the 2nd embryonic molt. The trichogen cells form two concentric pairs proximally. Two tormogen cells secrete the cuticular socket of the sensillum. The dendritic outer segments of the sensory cells are branched. Bifurcate type-A sensilla have also been observed. Type-B sensilla comprise three sensory and four enveloping cells (one thecogen, two trichogen and one tormogen). The trichogen process is formed by the two trichogen cells, each of which gives rise to two projections. The trichogen cells are concentrically arranged. The dendritic outer segments of the sensory cells are unbranched. In the fully developed sensillum, all trichogen and tormogen cells border on the outer receptor lymph cavity. It is suggested that the multicellular organization of the type-A sensilla can be regarded as being advanced rather than primitive.Supported by the Dcutschc Forschungsgemeinschaft (SFB 4/G1)  相似文献   

10.
Summary The structure of the sensilla in the apical pit of the third segment of the labial palps in Pieris rapae was investigated in cryofixed and chemically fixed specimens. There is a field of about 80 club-shaped sensilla, 94% of which house a single sensory cell; 6% contain two sensory cells. All sensory cells are of the same type and are characterized by the structure of the dendritic outer segment. This consists of a proximal cylindrical and a distal lamellated section. The lamellae contain a lattice of longitudinally arranged microtubules. Filamentous strands connect the microtubules with the surface membrane of the lamellae. The surface area of the lamellated section amounts to about 40 m2. Pores and pore tubules are present in the cuticular wall of the peg. Electrophysiological recordings show that the sensory cells are olfactory receptors, which react to a variety of complex plant odors and to the odor of conspecifics. It is shown that (a) the usual modality-specific characteristics of insect olfactory sensilla apply here also; (b) lamellation is not only a characteristic of thermoreceptors, but also of olfactory chemoreceptors; (c) there are pore tubules that are separated from the dendritic membranes by an extended dendritic sheath; and (d) in the labial palppit sensilla only the lamellated dendritic tip region may be involved in sensory transduction.Supported by the Deutsche Forschungsgemeinschaft (SFB 4/G1)  相似文献   

11.
The Australian ‘little ash beetle’ Acanthocnemus nigricans (Coleoptera, Cleroidea, Acanthocnemidae) is attracted by forest fires. A. nigricans has one pair of unique prothoracic sensory organs and it has been speculated that these organs may play a role in fire detection. Each organ consists of a cuticular disc, which is fixed over an air-filled cavity. On the outer surface of the disc, about 90 tiny cuticular sensilla are situated. The poreless outer peg of a sensillum is 3–5 μm long and is surrounded by a cuticular wall. One ciliary sensory cell innervates the peg. As a special feature, the outer dendritic segment is very short already terminating below the cuticle. A massive electron-dense cylindrical rod, which most probably represents the hypertrophied dendritic sheath, extends through the cuticular canal connecting the tip of the outer dendritic segment to the peg. The dendritic inner segment and the soma are fused indistinguishably. Thin, leaflike extensions of glial cells deeply extend into that conjoint and considerably enlarged compartment which also contains large numbers of mitochondria. In summary, the sensilla of the sensory disc of A. nigricans represent a new type of insect sensillum of hitherto unknown function. The possible role of the prothoracic sensory organ in fire detection is discussed.  相似文献   

12.
Ultrastructural examination of grooved-peg (GP) sensilla on the antenna of fifth instar Triatoma infestans nymphs by scanning electron microscopy and transmission electron microscopy reveal that they are 8–18 μm long with a diameter of about 2–2.8 μm at the non-articulated base. Some pegs have a terminal pore. These double-walled wall-pore (dw-wp) sensilla have an outer cuticular wall with 13–18 longitudinal grooves at the distal part of the peg. Groove channels are present at the bottom of the grooves from which radial spoke channels lead into the inner sensillum-lymph cavity. A dendrite sheath connects the tip of the thecogen cell to the inner cuticular wall thus forming separated outer and inner sensillum-lymph cavities. Four or five bipolar receptor cells are ensheathed successively within the GP sensilla by the thecogen cell, trichogen and tormogen cells. The inner dendritic segments of each sensory cell give rise at the ciliary constriction to an unbranched outer dendritic segment which can reach the tip of the sensillum.Electrophysiological recordings from the GP sensilla indicate that they house NH3, short-chain carboxylic acid and short-chain aliphatic amine receptor cells and can be divided into three functional sub-types (GP 1–3). All GP sensilla carry a receptor cell excited by aliphatic amines, such as isobutylamine, a compound associated with vertebrate odour. GP type 1 and 2 sensilla house, in addition, an NH3-excited cell whereas the type 2 sensilla also contains a short-chain carboxylic acid receptor. No cell particularly sensitive to either NH3 or carboxylic acids was found in the grooved-peg type 3 sensilla. GP types 1, 2 and 3 represent ca. 36, 10 and 43% of the GP sensilla, respectively, whereas the remaining 11% contain receptor cells that manifest normal spontaneous activity but do not respond to any of the afore mentioned stimuli.  相似文献   

13.
Summary The ontogeny of the chemoreceptive sensilla in the labial palp-pit organ was studied in Pieris rapae by examining twelve successive stages between pupation and emergence of the imago, which takes a period of 160 h under the experimental conditions. Mitoses occur until 20 h after pupation. They lead to anlagen of sensilla, 91% of which are comprised of three sensory cells. However, two sensory cells degenerate in each sensillum during a period of 28 h. The same process occurs in anlagen with four sensory cells resulting in bicellular sensilla. Axons grow out only after the number of sensory cells has been reduced. Further consecutive steps in sensory cell differentiation are: (a) outgrowth of dendritic outer segment and dendrite sheath; (b) outgrowth of trichogen process and change in structure of elongating dendrite sheath; (c) deposition of cuticle and pore tubules in the pegs; (d) retraction of trichogen process; (e) increase in diameter of dendritic outer segment accompanied by increase of microtubule number and appearance of regularly spaced electron-dense bodies at tubular doublets; (f) branching of dendritic outer segment; and (g) transformation of the dendritic branches into curled lamellae and partial destruction of the dendrite sheath. The unique process of sensory cell degeneration is interpreted as an event that revokes a step towards a possible functional improvement of the labial palp-pit organ during further evolutionSupported by the Deutsche Forschungsgemeinschaft (SFB 4/G1)  相似文献   

14.
The fine structure of coeloconic sensilla of Bombyx mori was studied in cryofixed specimens. These sensilla belong to the category of double-walled wall-pore sensilla. The pegs are approximately 10 mum long, located in pits on the dorsal side of the antennal branches, and longitudinally grooved in their distal half (grooved surface approximately 30 mum(2)). The central lumen contains the outer dendritic segments of usually five receptor cells, and is surrounded by up to 15 partially fused cuticular fingers. The peripheral lumina of these cuticular fingers are filled with material resembling wax-canal filaments. Radial spoke channels ( approximately 600 per peg), each 10-20 nm wide, connect the central lumen with the longitudinal groove channels. Groove and spoke channels are assumed to mediate the transport of odorant molecules from the outer epicuticular surface layers to the sensory dendrites. Thus the double-walled wall-pore sensilla represent a bauplan essentially different from single-walled wall-pore sensilla; the reason, however, why the two types are found together throughout the insect orders remains enigmatic. Other peculiar features of the coeloconic sensilla of the silkmoth are invaginations of the outer dendritic segments and direct contacts between the receptor cell somata. The latter may be the structural correlate to electrophysiological observations indicative of peripheral interaction between the receptor neurons. All three auxiliary cells have elaborately folded apical plasma membranes studded with portasomes and associated with an abundance of mitochondria; basally they often contact tracheal branches. As compared to the auxiliary cells of the single-walled olfactory sensilla of the same species, all the mentioned features are much more prominent and hint to a higher ion pumping activity at the border to the sensillum-lymph cavities.  相似文献   

15.
Sensilla lining the inner walls of the sacculus on the third antennal segment of Drosophila melanogaster were studied by light and transmission electron microscopy. The sacculus consists of three chambers: I, II and III. Inside each chamber morphologically distinct groups of sensilla having inflexible sockets were observed. Chamber I contains no-pore sensilla basiconica (np-SB). The lumen of all np-SB are innervated by two neurons, both resembling hygroreceptors. However, a few np-SB contain one additional neuron, presumed to be thermoreceptive. Chamber II houses no-pore sensilla coeloconica (np-SC). All np-SC are innervated by three neurons. The outer dendritic segments of two of these neurons fit tightly to the wall of the lumen and resemble hygroreceptor neurons. A third, more electron-dense sensory neuron, terminates at the base of the sensillum and resembles a thermoreceptor cell. Chamber III of the sacculus is divided into ventral and dorsal compartments, each housing morphologically distinct grooved sensilla (GS). The ventral compartment contains thick GS1, and the dorsal compartment has slender sensilla GS2. Ultrastructurally, both GS1 and GS2 are doublewalled sensilla with a longitudinal slit-channel system and are innervated by two neurons. The dendritic outer segment of one ofthe two neurons innervates the lumen of the GS and branches. On morphological criteria, we infer this neuron to be olfactory. The other sensory neuron is probably thermoreceptive. Thus, the sacculus in Drosophila has sensilla that are predominantly involved in hygroreception, thermoreception, and olfaction. We have traced the sensory projections of the neurons innervating the sacculus sensilla of chamber III using cobaltous lysine or ethanolic cobalt (II) chloride. The fibres project to the antennal lobes, and at least four glomeruli (VM3, DA3 and DL2-3) are projection areas of sensory neurons from these sensilla. glomerulus DL2 is a common target for the afferent fibres of the surface sensilla coeloconica and GS, whereas the VM3, DA3 and DL3 glomeruli receive sensory fibres only from the GS.  相似文献   

16.
Lepidopteran larvae possess two pairs of styloconic sensilla located on the maxillary galea. These sensilla, namely the lateral and medial styloconic sensilla, are each comprised of a smaller cone, which is inserted into a style. They are thought to play an important role in host-plant selection and are the main organs involved in feeding. Ultrastructural examination of these sensilla of fifth instar Lymantria dispar (L.) larvae reveal that they are each approximately 70 um in length and 30 um in width. Each sensillum consists of a single sensory peg inserted into the socket of a large style. Each peg bears a slightly subapical terminal pore averaging 317 nm in lateral and 179 nm in medial sensilla. Each sensillum houses five bipolar neurons. The proximal dendritic segment of each neuron gives rise to an unbranched distal dendritic segment. Four of these dendrites terminate near the tip of the sensillum below the pore and bear ultrastructural features consistent with contact chemosensilla. The fifth distal dendrite terminates near the base of the peg and bears ultrastructural features consistent with mechanosensilla. Thus, these sensilla each bear a bimodal chemo-mechanosensory function. The distal dendrites lie within the dendritic channel and are enclosed by a dendritic sheath. The intermediate and outer sheath cells enclose a large sensillar sinus, whereas the smaller ciliary sinus is enclosed by the inner cell. The neurons are ensheathed successively by the inner, intermediate, and outer sheath cells.  相似文献   

17.
Antennal sensilla ofNeomysis integer (leach)   总被引:1,自引:0,他引:1  
G. -W. Guse 《Protoplasma》1978,95(1-2):145-161
Summary The most frequent type of the hair sensilla on the antennae ofNeomysis integer is investigated by electron microscopic methods. The cellular properties of the sensilla are compared with those of other arthropods in order to detect possible homologies.The hairs are innervated by 2, 3, 6, 8, 9, or 10 sensory cells. The dendrites show an inner and outer dendritic segment. Five or six enveloping cells belong to a sensillum. In intermoult stage, processes of all the enveloping cells except the innermost one extend into the hair shaft. The sensory hairs possess only a single liquor cavity, which morphologically is homologous to the inner lymph cavity of insect sensilla. Around the liquor cavity, a supporting structure is located which seems to be identical to the scolopale of chordotonal organs. The six-to tenfold-innervated hairs possess two groups of differently structured dendrites which are regularly arranged on opposite sides of the liquor cavity. The outer dendritic segments are enclosed in a dendritic sheath. It is secreted by the innermost enveloping cell (= dendritic sheath cell of insect sensilla). All the outer dendritic segments terminate in the distal region of the hair shaft which shows a pore at its tip. The possible function of the sensilla is discussed. The double and triple-innervated hairs are considered to be mechano-receptors, whereas the sensilla associated with six to ten sensory cells might be mechano-chemoreceptors.  相似文献   

18.
The head of Austroperipatus aequabilis bears five types of sensilla. which were examined by electron microscopy. They differ from each other in position, shape of outer sensory elements and cuticular socket structures. Thus, we distinguish sensilla with sensory hairs, sensilla with sensory bulbs, cone-shaped sensilla. sensilla with sensory bristles, and sensilla of the lips. They are composed of up to 15 cells, which can he separated into four cell types. The most frequent cell type is the bipolar receptor cell that occurs in all sensilla. The apical surface of this primary receptor cell is characterized by one or two partly branched cilia with a basal 9 × 2 + 0 pattern of microtubules. A modified bipolar receptor cell was found in all sensilla bearing a sensory peg except for the sensilla equipped with sensory bristles. The apical dendrite extends to a long pale process which exclusively contains mitochondria and single microtubules. In all sensilla examined in this study at least one supporting cell occurs which is characterized by parallel microvilli. An additional function of this cell type as a part of the stimulus-conducting system is possible. In the sensillum with a sensory bulb two kinds of supporting cells occur. A unique cell type with an upside down position has regularly been found in all sensilla bearing a sensory peg. Apart from the sensilla they also occur within the labial epidermis. Since most sensilla contain several different receptor cells, they can be considered as complex sense organs. © 1998 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd. All rights reserved  相似文献   

19.
A hitherto unknown sensillum type, the “intracuticular sensillum” was identified on the dactyls of the walking legs of the shore crab, Carcinus maenas. Each sensillum is innervated by two sensory cells with dendrites of “scolopidial” (type I) organization. The ciliary segment of the dendrite is 5–6 μm long and contains A-tubules with an electron-dense core and dynein arm-like protuberances; the terminal segment is characterized by densely packed microtubules. The outer dendritic segments pass through the endo- and exocuticle enclosed in a dendritic sheath and a cuticulax tube (canal), which is suspended inside a slit-shaped cavity by cuticular lamellae. The dendrites and the cavity terminate in a cupola-shaped invagination of the epicuticle. External cuticular structures are lacking. Three inner and four to six outer enveloping cells are associated with each intracuticular sensillum. The innermost enveloping cell contains a large scolopale that is connected to the ciliary rootlets inside the inner dendritic segments by desmosomes. Scolopale rods are present in enveloping cell 2. Since type I dendrites and a scolopale are regarded as modality-specific structures of mechanoreceptors, and since no supracuticular endorgan is present, the intracuticular sensilla likely are sensitive to cuticular strains. The intracuticular sensilla should be regarded as analogous to insect campaniform sensilla and arachnid slit sense organs.  相似文献   

20.
A previously unknown type of sensillum with a thin cuticular dome and two pairs of pores is described in the amphipod Gammarus setosus. There is only one dome sensillum on each interantennal lobe of the head. The receptor is innervated by two sensory dendrites that bifurcate into two pairs of 9 + 0 cilia, concentrically enclosed by four auxiliary cells—two thecogen, one trichogen, and one tormogen and surrounded by a cluster of accessory cells. The ciliary regions are contained in small inner lymph cavities. The outer segments are sheathed by the apical extensions of the thecogen cells, are looped inside the outer lymph cavity, and come in close contact with lipid spheroids inside the dome. The basal bodies consist of microtubule doublets, which extend into the distal segments where they are interspersed with singlets. The nodal inner dendritic segments join the ventral suspension cord of the organ of Bellonci and enter its ganglion. The application of colloidal lanthanum resulted in intraciliary lanthanum deposits. The dome sensilla are presumed to be chemosensory because their cellular plan has similarities to that of some known olfactory and pheromone-sensitive sensilla in decapod crustaceans and insects. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号