首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 175 毫秒
1.
Summary Increment borer samples taken at breast height in Pilgerodendron uviferum (Cupressaceae) trees growing in two Chilean forest stands near latitude 42° south were used to study growth rates in diameter, basal area, and height. Radial average growth is 0.51 mm/year in Santa Luci 0.44 mm/year in the Piuchué stand; the correlation between diameter and age is 0.79 in Santa Lucía and 0.64 in Piuchué. Similar results were obtained in the basal area/age relationship. Both groups of trees have a low rate of growth compared to rates obtained in other studies. Maximum values for radial growth (culmination age) are reached at 110 years of age in Santa Lucia and 50 years in Piuchue. Growth in height, averaging 5.8 cm/year, appears to be similar in all trees analyzed; occasional differences can be attributed to understory position of some trees. Comparison of radial growth and germination of Pilgerodendron plants shows a synchronous relationship, suggesting an influence of climate on the pattern of forest regeneration.  相似文献   

2.
Prosopis flexuosa trees dominate woodlands in the Central Monte Desert (Mendoza, Argentina), with <200 mm rainfall, exploiting the water table recharged by Andean rivers, and also growing in dunes with no access to the water table. Prosopis woodlands were extensively logged during development of the agricultural oasis, and surface and groundwater irrigation could lower the depth of the water table in the future. We evaluated tree populations with decreasing access to the water table: valley adult trees, valley saplings, and dune adult trees, in order to assess their ecophysiological response to water table accessibility. High and seasonally stable pre-dawn leaf water potentials (−2.2 ± 0.2 to −1.2 ± 0.07 MPa) indicated that valley adults utilize larger and more stable water reservoirs than valley saplings and dune adults (−3.8 ± 0.3 to −1.3 ± 0.07 MPa), with higher midday leaf conductance to water vapor (valley adults ~250; dune adults <60 mmol m−2 s−1), potentially higher CO2 uptake, and increased radial growth rate (valley adults 4.1 ± 0.07; dune adults 2.9 ± 0.02 mm year−1). Trees with poor access to the water table exhibited drought tolerance responses such as midday stomata closure, leaflet closure, and osmotic adjustment. Stomata density decreased in response to drought when leaf expansion was restricted. The combination of phreatophytism and drought tolerance would enlarge P. flexuosa habitats and buffer populations against changes in rainfall dynamics and water table depth.  相似文献   

3.
Tree-ring width chronologies from 276 Larix gmelinii cores taken in northeastern China were used to analyze spatial and age-dependent growth–climate response relationships. Tree radial growth from five localities showed similar patterns, while exhibiting different tree-ring growth responses to local climate. The rotated principal component analysis (RPCA) indicated that tree age, growing season moisture conditions, and ambient air temperature variations resulted from location differences (e.g., longitude, latitude, and altitude), which could explain the non-stationary spatial climate–growth relations observed. The study tested the fundamental assumption that the climate–growth of L. gmelinii was age independent after the removal of size trends and disturbance signals. The age-related climate–growth relationship might potentially improve the veracity of past climate reconstructions. Bootstrapped correlation function analyses suggested that the response of L. gmelinii radial growth to climate differed between trees ≥150 years old and <150 years old. Mean sensitivity and standard deviation for trees increased with age in the <150 years old tree class; whereas trees ≥150 years old had no significant relationship with age. These results showed that the assumption of age-independent climate–growth relationship is invalid at these sites. Physiological processes and/or hydraulic constraints dependent on tree age, together with detrending techniques could be the possible causal factors of clear age-dependent responses. These results suggested the importance of incorporating trees of all ages into the chronology to recover a detailed climatic signal in a reconstruction of L. gmelinii for this region.  相似文献   

4.
Dendrochronology generally assumes that climate–growth relationships are age independent once the biological growth trend has been removed. However, tree physiology, namely, photosynthetic capacity and hydraulic conductivity changes with age. We tested whether the radial-growth response to climate and the intra-annual density fluctuations (IADFs) of Pinus pinaster Ait. varied with age. Trees were sampled in Pinhal de Leiria (Portugal), and were divided in two age classes: young (<65 years old) and old (>115 years old). Earlywood and tree-ring width of young P. pinaster trees were more sensitive to climate influence while the response of latewood width to climate was stronger in old trees. Young trees start the growing season earlier, thus a time window delay occurs between young and old trees during which wood cells of young trees integrate environmental signals. Young trees usually have a longer growing season and respond faster to climate conditions, thus young P. pinaster trees presented a higher frequency of IADFs compared with old trees. Most of the IADFs were located in latewood and were positively correlated to autumn precipitation. The radial-growth response of P. pinaster to climate and the IADFs frequency were age dependent. The use of trees with different age to create a tree-ring chronology for climate studies can increase the resolution of climatic signals. Age-dependent responses to climate can also give important clues to predict how young and old trees react to climate change.  相似文献   

5.
Increasing elevation can restrict the expansion of tree species by negatively affecting growth. In this study, we estimated growth velocity and evaluated the effects of extreme elevation on radial growth of the Andean tree Polylepis tarapacana Philippi (Rosaceae). We also developed different models to predict the relationship between age (number of tree-rings) and allometric characters (total height and diameter). Samples of trees and shrubs were collected between 4,200 and 4,600 m asl and analyzed using standard dendrochronological methods. Results evidenced that P. tarapacana is a slow-growing species since it grows less than 5 mm per year. Furthermore, elevation has a negative effect on radial growth. Morphometric models showed that a positive relationship between total height and diameter exists but not a significant relation between number of tree-rings and morphometry. Elevation had a major role in the radial growth of P. tarapacana which interacts with microclimatic conditions. Careful considerations should be made at the moment of using allometry as a surrogate for age in ecological studies.  相似文献   

6.
Age‐related changes are usually overlooked in perennial grass research; when they are considered it is usually as a change in plant size (e.g., biomass). Whether other physiological or developmental aspects change as stands age, and how those aspects may impact long‐term stand dynamics, remains unclear. Conventional experimental designs study a single stand over multiple growing seasons and thereby confound age‐related changes with growing season conditions. Here we used a staggered‐start experimental design with three repeated planting years over two growing seasons to isolate growing season effects. We studied changes in Miscanthus × giganteus phenology during its yield‐building stage (first 3 years) and estimated age, growing season and nitrogen (N) effects on development using nonlinear regression parameters. Stand age clearly changed plant growth; faster developmental rates were usually seen in 1‐year‐old stands (young), but because 2‐ and 3‐year‐old stands (mature) emerged 3 months earlier than newly planted stands they produced 30% more stems with 30%–60% more leaves. Nitrogen fertilization modulated some age‐related phenological changes. Fertilized 2‐year‐old stands reached similar stem densities as unfertilized 3‐year‐old stands and had fewer number of senesced leaves like 1‐year‐old stands. In addition, N fertilization had no effect on young M. × giganteus, but extended mature stands’ growing season more than 2 weeks by hastening emergence and delaying senescence. It also delayed flowering regardless of stand age. Our results suggest that, along with changes in size, M. × giganteus stands showed shifts in developmental strategies: young stands emerged later and developed faster, while mature stands grew for longer but more slowly. In temperate regions, where hard frost events are likely to interrupt development in late autumn, rapid early development is critical to plant survival. Nonlinear regression parameter differences proved effective in identifying phenological shifts.  相似文献   

7.
The interactive effects of climate variables and tree–tree competition are still insufficiently understood drivers of forest response to global climate change. Precipitation and air humidity are predicted to rise concurrently at high latitudes of the Northern Hemisphere. We investigated whether the growth response of deciduous trees to elevated air humidity varies with their competitive status. The study was conducted in seed‐originated silver birch and monoclonal hybrid aspen stands grown at the free air humidity manipulation (FAHM) experimental site in Estonia, in which manipulated stands (= 3 for both species) are exposed to artificially elevated relative air humidity (6–7% over the ambient level). The study period included three growing seasons during which the stands had reached the competitive stage (trees were 7 years old in the final year). A significant ‘treatment×competitive status’ interactive effect on growth was detected in all years in birch (< 0.01) and in one year in aspen stands (= 0.015). Competitively advantaged trees were always more strongly affected by elevated humidity. Initially the growth of advantaged and neutral trees of both species remained significantly suppressed in humidified stands. In the following years, dominance and elevated humidity had a synergistic positive effect on the growth of birches. Aspens with different competitive status recovered more uniformly, attaining similar relative growth rates in manipulated and control stands, but preserved a significantly lower total growth yield due to severe initial growth stress. Disadvantaged trees of both species were never significantly affected by elevated humidity. Our results suggest that air humidity affects trees indirectly depending on their social status. Therefore, the response of northern temperate and boreal forests to a more humid climate in future will likely be modified by competitive relationships among trees, which may potentially affect species composition and cause a need to change forestry practices.  相似文献   

8.
Browsing is one of the main factors determining survival, growth rate, woodland structure, and distribution of the high mountain tree Polylepis australis. This species has a substantial regrowth capacity, which may function as a mechanism to tolerate herbivory, but it is unknown to what extent it may compensate for the impact of herbivory. In 15 low-density tree stands subject to exclusion, moderate, and heavy livestock pressure, we selected 12 P. australis individuals <2 m tall, tagged four new shoots per tree and measured shoot length every month during a year. At the stand and at the tree level, we analyzed monthly dynamics of growth and browsing, and the annual output in terms of total browsing and total gross and net growth (not discounting and discounting consumption, respectively). In addition, we assessed the influence of stand, tree and microsite characteristics on growth and browsing patterns. Polylepis australis fully compensated for herbivory in terms of shoot gross growth at moderate, but not at heavy livestock pressure. In terms of net growth, this species did not fully compensate for herbivory at any stocking rate. We found a strong coupling between browsing and growth along the year, suggesting that regrowth attracts browsing, and browsing promotes regrowth. At the stand level, annual gross growth was not affected by habitat characteristics, while at the tree level, annual gross growth decreased on more rocky microsites for browsed but not for unbrowsed trees. We concluded that stocking densities should be limited to allow for a reasonable annual net growth, as its nitrogen rich leaves are a valuable food resource and P. australis forests provide important ecosystem services.  相似文献   

9.
Morales MS  Villalba R 《Oecologia》2012,168(2):381-392
Biological processes in arid communities are associated with episodic precipitation pulses. We postulate that annual to decadal-scale precipitation pulses modulate the dynamics of the intermontane Prepuna woodlands. To study this hypothesis, we have assessed the influence of precipitation pulses on the rates of growth and survival of Prosopis ferox in the Prepuna woodlands during the past century. Tree ages from several P. ferox stands were used to reconstruct the establishment patterns at each sampling site. Ring-width chronologies provided the basis to assess the influence of annual versus multiannual precipitation pulses on radial growth and establishment over time. Both the radial growth and the stand dynamics of P. ferox at the regional scale were found to be largely modulated by climate, with precipitation the dominant factor influencing interannual variations in P. ferox ring-widths. Our analysis of dendrochronological dating data on 885 individuals of P. ferox revealed a period of abundant establishment from the mid-1970s to beginning of 1990s, which is coincident with an interval of remarkable above-average precipitation. However, tree-growth and establishment patterns at the local scale in the Prepuna also reflected land-use changes, particularly long-term variations in livestock intensity. The P. ferox dynamics documented here substantiates the hierarchical concept of “resource-pulse” in dry ecosystems, with precipitation pulses of different lengths modulating distinct dynamic processes in the P. ferox woodlands. Interannual variations in precipitation influence year-to-year patterns of P. ferox radial growth, whereas multiannual oscillations in rainfall influence episodic events of tree establishment. The long-term interval considered in this study enabled us to disentangle the roles of natural versus human controls on P. ferox dynamics in the region.  相似文献   

10.
To predict the long‐term effects of climate change – global warming and changes in precipitation – on the diameter (radial) growth of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) trees in boreal Ontario, we modified an existing diameter growth model to include climate variables. Diameter chronologies of 927 jack pine and 1173 black spruce trees, growing in the area from 47°N to 50°N and 80°W to 92°W, were used to develop diameter growth models in a nonlinear mixed‐effects approach. Our results showed that the variables long‐term average of mean growing season temperature, precipitation during wettest quarter, and total precipitation during growing season were significant (alpha = 0.05) in explaining variation in diameter growth of the sample trees. Model results indicated that higher temperatures during the growing season would increase the diameter growth of jack pine trees, but decrease that of black spruce trees. More precipitation during the wettest quarter would favor the diameter growth of both species. On the other hand, a wetter growing season, which may decrease radiation inputs, increase nutrient leaching, and reduce the decomposition rate, would reduce the diameter growth of both species. Moreover, our results indicated that future (2041–2070) diameter growth rate may differ from current (1971–2000) growth rates for both species, with conditions being more favorable for jack pine than black spruce trees. Expected future changes in the growth rate of boreal trees need to be considered in forest management decisions. We recommend that knowledge of climate–growth relationships, as represented by models, be combined with learning from adaptive management to reduce the risks and uncertainties associated with forest management decisions.  相似文献   

11.

Aim

To determine the palaeoecological influences of climate change and human land use on the spatial distribution patterns of Polylepis woodlands in the Andes.

Location

Tropical Andes above 2,900 m between 2°S and 18°S of latitude.

Methods

Pollen and charcoal data were gathered from 13 Andean lake sediment records and were rescaled by the maximum value in each site. The rescaled pollen data were used to estimate a mean abundance and coefficient of variation to show woodland expansions/contractions and woodland fragmentation over the last 20,000 years. The rescaled charcoal was displayed as a 200‐year moving median using 500‐year bins to infer the influence of fire on woodland dynamics at landscape scale. Pollen and charcoal were compared with speleothem, clastic flux and archaeological data to assess the influence of moisture balance, glacial activity and human impact on the spatial distribution of Polylepis woodlands.

Results

Woodland expansion and fire were correlated with precipitation changes and glacier dynamics from c. 20 to 6 kcal bp (thousands of calibrated years before present). Charcoal abundances between 20 and 12 kcal bp were less common than from 12 kcal bp to modern. However, human‐induced fires were unlikely to be the main cause of a woodland decline centred at 11 kcal bp , as woodlands recovered from 10.5 to 9.5 kcal bp (about twofold increase). Charcoal peaks analogous to those that induced the woodland decline at 11 kcal bp were commonplace post‐9.5 kcal bp but did not trigger an equivalent woodland contraction. An increase in the coefficient of variation after c. 5.5 kcal bp suggests enhanced fragmentation and coincided with the shift from logistic to exponential growth of human populations. Over the last 1,000 years, Polylepis became hyper‐fragmented with over half of sites losing Polylepis from the record and with coefficients of variation paralleling those of glacial times.

Main conclusions

Polylepis woodlands formed naturally patchy woodlands, rather than a continuous vegetation belt, prior to human occupation in the Andes. The main factors controlling pre‐human woodland dynamics were precipitation and landscape heterogeneity. Human activity led to hyper‐fragmentation during the last c. 1,000 years.  相似文献   

12.
It has long been hypothesized that trees growing at range limits likely also occur near the limit of their ecological amplitude and thus, should be more sensitive to climate variability than individuals growing nearer the range core. We developed a tree-ring chronology using Tsuga canadensis individuals from three disjunct stands at the species’ southern limit to quantify the influence of climate and disturbance on radial growth patterns. The tree-ring record extended 158 years from 1850 to 2007. Significant negative relationships were found between the STANDARD chronology and monthly mean temperature, monthly maximum temperature, and monthly minimum temperature during the previous and current summer, while significant positive relationships were documented between the STANDARD chronology and monthly minimum temperature for September and October of the current year. Also, significant positive relationships were documented between the STANDARD chronology and monthly total precipitation for September of the previous year and May of the current year. Response function analysis showed that monthly climate variables (r 2 = 0.22) and prior growth (r 2 = 0.40) explained 62% of the variance in the T. canadensis tree-ring chronology. A time series plot for the T. canadensis chronology showed that actual tree growth agreed relatively well with the predicted growth based on significant climate variables. However, positive departures from the predicted growth were noted. Dendroecological analysis revealed these departures were likely related to disturbance events. Our results indicated that T. canadensis individuals at its southernmost extent are sensitive to regional climate, but not more so than trees nearer the range core. We hypothesize that microenvironmental conditions of T. canadensis stands at its southern limit are similar to conditions within the contiguous distribution of the species, which may explain this pattern.  相似文献   

13.
Abstract. On the granite outcrops of the southeastern United States, soil accumulates in shallow depressions on the rock surface. A specific sequence of vascular plants characterizes the temporal development of these systems. The edaphic end point of the succession is apparently attained with a herb-shrub-tree stage with Pinus taeda as the dominant tree. We studied the characteristics of this stage and the population structure of P. taeda on outcrop islands in order to specify the successional status of the species in this habitat. We compared the radial growth pattern of outcrop and Piedmont populations of P. taeda, and of two outcrop sub-populations. We checked whether trees on outcrops experience more limiting conditions than trees on the Piedmont, and studied the recent change in the relationship between growth and stress (e.g. drought and atmospheric deposition) reported for loblolly pine in the southeastern United States. We also attempted to identify the climatic variables most critical for tree growth on outcrops. On outcrop soil islands, P. taeda maintains populations that are of irregular age distribution, possibly in response to irregular recruitment and survival. There are no signs of loblolly pine replacement by hardwood species on any of the islands studied, although an understory of shrubby oak appears to characterize larger and deeper-soil islands. Although trees on the Piedmont were growing at a higher rate than those on the outcrop in the first part of the 1950–1988 period, their growth declined at a higher rate than that of trees on the outcrop. As a result, at the end of the period considered (1950–1988), the differences in radial growth between outcrop and Piedmont populations were relatively small. On the outcrop, trees < 22 yr old in 1989 were growing at a rate somewhat lower than that of trees of similar age, 40 yr ago. Differences were apparent in the initial growth patterns between the two outcrop subpopulations (1989 and 1949 stems), and these could have resulted from differences in competition regime, stress or climatic conditions, or a combination thereof. However, a repeated-measures ANOVA failed to reveal a significant recent decrease in the radial growth of loblolly pine in the system studied. The identification of numerous signature years (years with ≥ 80 % of the trees with similar increasing or decreasing trend in their radial growth) suggests that similar environmental variables control the growth of loblolly pine in both outcrop and Piedmont habitats. High temperature and low precipitation in the first part of the summer (June-July) seem to limit radial growth. Those pines growing on outcrop soil islands, however, appear more sensitive to climatic fluctuations.  相似文献   

14.
Extreme environmental events such as volcanic eruptions can trigger plant responses that largely exceed those recorded for moderate‐intensity disturbances. We assessed the effects of the June 2011 eruption of the Puyehue – Cordón Caulle volcano on the length and radial growths of juvenile Nothofagus pumilio trees at two sites located 20 (with >40 cm ash accretion) and 75 (without ash) km from the volcano. Variations in length and radial growth were evaluated for the periods 1999–2013 and 1993–2013 respectively; pre‐ and post‐eruption growth rates were computed. The length growth of the N. pumilio trees located close to the volcano increased significantly after the eruption: shoot extensions during the growing season after the eruption were, on average, two to three times longer than average according to ontogenetic growth trends. Variations in radial growth after the eruption were comparatively less noticeable than those in length growth. No significant effects of the eruption were observed in those trees located 75 km from the volcano. In order to explain the exceptionally positive response of N. pumilio's length growth to the volcanic eruption, three non‐exclusive explanations were proposed: (i) thick ash layers increase water retention in the soil; (ii) volcanic ash facilitates the access of plants to nutrients; and (iii) volcanic ashes decrease herbivory and competition. The comparatively lower sensitivity of radial growth to this extreme volcanic event is also noteworthy. These findings highlight the need to further examine how large‐scale volcanic events influence structure and/or functioning of ecosystem in the Patagonian forest.  相似文献   

15.
16.
Stand structure and spatial distribution of Picea jezoensis (Siebold et Zucc.) Carrière on Mt. Gyebang, Korea was investigated to provide information on the structural characteristics and the maintenance of P. jezoensis population in northern temperate mixed coniferous forests. Height and diameter at breast height (DBH) distribution, age, growth, and spatial distribution patterns of P. jezoensis were examined in thirty nine 100-400 m2 quadrats or circular plots. The overall stand structure attributes in the study sites are stem density of 709 trees ha−1, a mean DBH of 12.8 cm, and a mean height of 5.6 m, with reverse J shapes of DBH and height distributions. The stem density of P. jezoensis population was 81 trees ha−1, a mean DBH of 20.7 cm, and a mean height of 9.1 m, showing bimodal-like shapes in age and DBH distributions. Several growth release periods implied that P. jezoensis stands experienced small disturbances. The radius of patches of similar-sized P. jezoensis in the variogram was equivalent with the height of the tallest trees, indicating that patches were established following the fall of trees in the upper canopy layer. Small windthrows in this region contributed to the maintenance of the P. jezoensis stand by releasing sapling growth and providing nursing logs and space for seedlings.  相似文献   

17.
长白山红松不同树高处径向生长特征及其对气候的响应   总被引:1,自引:0,他引:1  
张雪  高露双  丘阳  郭静 《生态学报》2015,35(9):2978-2984
利用长白山红松不同树高(0.3、1.3、4、10、15、20、25 m)处的径向生长资料,分析各树高处径向生长特征,建立红松生长与气候因子的相关关系,以期完善红松种群对气候变化的响应机制。结果表明:(1)红松不同树高处年径向生长量变化趋势基本一致,除在1980年前后,20 m处径向生长量出现异常增加外,其他各高度径向生长均出现下降趋势,红松基部和顶端(0.3、1.3 m和20 m)处径向生长年际变化更明显。随着树高增加,各处年径向生长率有所降低,0.3m处生长速率最大,且与10 m和15 m处径向生长差异显著(P < 0.05)。(2)不同树高处径向生长对气候因子的响应存在明显差异,10 m树高是红松径向生长对温度和降水响应差异的分界线。10 m以下红松径向生长主要受到生长季温度的负作用,尤其是4 m处,与当年生长季初期(4月和5月)温度显著负相关(P < 0.05)。0.3 m和1.3 m处径向生长分别与上年9月平均温度显著正相关(P < 0.05),当年6月平均和最高温度显著负相关(P < 0.05)。随着树高上升,降水对径向生长的促进作用增强,而温度对径向生长的作用也发生改变。10 m(含)以上则受到温度和降水的共同作用。10 m处径向生长对气候因子响应最敏感,受到当年生长季高温的抑制作用,还与上年和当年生长季末(9月)降水显著正相关(P < 0.05)。15 m处径向生长与上年9月最低温度和降水显著正相关(P < 0.05),而与当年5月月平均温度显著负相关(P < 0.05)。20 m处径向生长与当年3月月平均、最低和最高温度,当年7月月平均温度以及当年5月降水显著正相关(P < 0.05),而与当年1月降水显著负相关(P < 0.05)。  相似文献   

18.
Despite the dwindling populations and an urgent need for conservation of unionid freshwater mussels in Japan, there are gaps in our understating of their fundamental ecology. This study examined size-dependent annual growth rates, elucidated size-specific intra-annual growth patterns, and estimated age and longevity of P. japanensis individuals for two locally isolated populations in agricultural drainage channels. Annual growth rates of P. japanensis were strongly size-dependent, with growth rates being exponentially decelerated with increasing shell length. Irrespective of sizes, individuals ceased to grow in winter when water temperature fell below 10°C. Intra-annual growth patterns were weakly explained by the changes in water temperature and differed among size classes; juveniles (<25 mm) maximized growth rate in May whereas the growth rates were the highest in June or July for larger individuals. Only adult individuals exhibited growth cessation in the July–August period, suggesting that energy investment was directed towards reproductive activities. Adults also showed negative growth rates (shrinkage of individuals) in winter, suggesting possible dissolution of shell margins. Age estimation based on two 1-year periods suggests that large numbers of P. japanensis individuals were >10 years old, and the oldest individuals were >20 years old for both study populations. Our findings suggest that anthropogenic activities conducted in spring may have strong influences on juveniles and population dynamics of P. japanensis and underscore the need for accurately determining age and longevity of remaining populations of unionid mussels.  相似文献   

19.
The spatial coverage of tree-ring chronologies in tropical South America is low compared to the extratropics, particularly in remote regions. Tree-ring dating from such tropical sites is limited by the generally weak temperature seasonality, complex coloration, and indistinct anatomical morphology in some tree species. As a result, there is a need to complement traditional methods of dendrochronology with innovative and independent approaches. Here, we supplement traditional tree-ring methods via the use of radiocarbon analyses to detect partial missing rings and/or false rings, and wood anatomical techniques to precisely delineate tree-ring boundaries. In so doing we present and confirm the annual periodicity of the first tree-ring width (TRW) chronology spanning from 1814 to 2017 for Juglans boliviana (‘nogal’), a tree species growing in a mid-elevation tropical moist forest in northern Bolivia. We collected 25 core samples and 4 cross-sections from living and recently harvested canopy-dominant trees, respectively. The sampled trees were growing in the Madidi National Park and had a mean age of 115 years old, with certain trees growing for over 200 years. Comparison of (residual and standard) TRW chronologies to monthly climate variables shows significant negative relationships to prior year May-August maximum temperatures (r = −0.54, p < 0.05) and positive relationships to dry season May-October precipitation (r = 0.60, p < 0.05) before the current year growing season. Additionally, the radial growth of Juglans boliviana shows a significant positive trend since 1979. Our findings describe a new and promising tree species for dendrochronology due to its longevity and highlight interdisciplinary techniques that can be used to expand the current tree-ring network in Bolivia and the greater South American tropics.  相似文献   

20.
Tree-ring chronologies were examined to investigate the influence of climate on radial growth of Pinus nigra in southeastern Spain. We addressed whether drought differentially affected the ring-widths of dominant and suppressed trees and if our results supported the hypothesis that, in a Mediterranean climate, suppressed conifer trees suffer greater growth reductions than dominant trees. Climate–growth relationships were analyzed using response and correlation functions, whereas the effect of drought on trees growth was approached by superposed epoch analysis in 10 dry years. A cool, wet autumn and spring, and/or mild winter enhanced radial growth. Latewood was the most sensitive ring section in both kinds of trees and it was primarily influenced by current year precipitations. Earlywood was mostly influenced by climatic conditions previous to the growing season. In general, May was the most influential month. Pinus nigra was shown to be very drought sensitive tree in the study area. Tree-rings in suppressed trees showed lower growth reductions caused by drought than those of dominant trees. However, dominant trees recovered normal growth faster. Dominant trees showed a more plastic response, and suppression appeared to reduce the effect of climate on tree radial growth. Some possible causes for these effects are discussed. Our results support the essential role of the balance between light and moisture limitations for plant development during droughts and show that it is not appropriate to generalize about the way in which suppression affects climate-growth relationship in conifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号