共查询到10条相似文献,搜索用时 78 毫秒
1.
Estimation of average number of nucleotide substitutions when the rate of substitution varies with nucleotide 总被引:17,自引:0,他引:17
Summary A formal mathematical analysis of Kimura's (1981) six-parameter model of nucleotide substitution for the case of unequal substitution rates among different pairs of nucleotides is conducted, and new formulae for estimating the number of nucleotide substitutions and its standard error are obtained. By using computer simulation, the validities and utilities of Jukes and Cantor's (1969) one-parameter formula, Takahata and Kimura's (1981) four-parameter formula, and our sixparameter formula for estimating the number of nucleotide substitutions are examined under three different schemes of nucleotide substitution. It is shown that the one-parameter and four-parameter formulae often give underestimates when the number of nucleotide substitutions is large, whereas the six-parameter formula generally gives a good estimate for all the three substitution schemes examined. However, when the number of nucleotide substitutions is large, the six-parameter and four-parameter formulae are often inapplicable unless the number of nucleotides compared is extremely large. It is also shown that as long as the mean number of nucleotide substitutions is smaller than one per nucleotide site the three formulae give more or less the same estimate regardless of the substitution scheme used.On leave of absence from the Department of Biology, Faculty of Science, Kyushu University 33, Fukuoka 812, Japan 相似文献
2.
Estimation of evolutionary distances between nucleotide sequences 总被引:11,自引:0,他引:11
Andrey Zharkikh 《Journal of molecular evolution》1994,39(3):315-329
A formal mathematical analysis of the substitution process in nucleotide sequence evolution was done in terms of the Markov process. By using matrix algebra theory, the theoretical foundation of Barry and Hartigan's (Stat. Sci. 2:191–210, 1987) and Lanave et al.'s (J. Mol. Evol. 20:86–93, 1984) methods was provided. Extensive computer simulation was used to compare the accuracy and effectiveness of various methods for estimating the evolutionary distance between two nucleotide sequences. It was shown that the multiparameter methods of Lanave et al.'s (J. Mol. Evol. 20:86–93, 1984), Gojobori et al.'s (J. Mol. Evol. 18:414–422, 1982), and Barry and Hartigan's (Stat. Sci. 2:191–210, 1987) are preferable to others for the purpose of phylogenetic analysis when the sequences are long. However, when sequences are short and the evolutionary distance is large, Tajima and Nei's (Mol. Biol. Evol. 1:269–285, 1984) method is superior to others. 相似文献
3.
Three frequently used methods for estimating the synonymous and nonsynonymous substitution rates (Ks and Ka) were evaluated and compared for their accuracies; these methods are denoted by LWL85, LPB93, and GY94, respectively. For this purpose, we used a codon-evolution model to obtain the expected Ka and Ks values for the above three methods and compared the values with those obtained by the three methods. We also proposed some modifications of LWL85 and LPB93 to increase their accuracies. Our computer simulations under the codon-evolution model showed that for sequences < or =300 codons, the performance of GY94 may not be reliable. For longer sequences, GY94 is more accurate for estimating the Ka/Ks ratio than the modified LPB93 and LWL85 in the majority of the cases studied. This is particularly so when k > or = 3, which is the transition/transversion (mutation) rate ratio. However, when k is approximately 2 and when the sequence divergence is relatively large, the modified LWL85 performed better than GY94 and the modified LPB93. The inferiority of LPB93 to LWL85 is surprising because LPB93 was intended to improve LWL85. Also, it has been thought that the codon-based method of GY94 is better than the heuristic method of LWL85, but our simulation results showed that in many cases, the opposite was true, even though our simulation was based on the codon-evolution model. 相似文献
4.
Summary Conducting computer simulations, Nei and Tateno (1978) have shown that Jukes and Holmquist's (1972) method of estimating the number of nucleotide substitutions tends to give an overestimate and the estimate obtained has a large variance. Holmquist and Conroy (1980) repeated some parts of our simulation and claim that the overestimation of nucleotide substitutions in our paper occurred mainly because we used selected data. Examination of Holmquist and Conroy's simulation indicates that their results are essentially the same as ours when the Jukes-Holmquist method is used, but since they used a different method of computation their estimates of nucleotide substitutions differed substantially from ours. Another problem in Holmquist and Conroy's Letter is that they confused the expected number of nucleotide substitution with the number in a sample. This confusion has resulted in a number of unnecessary arguments. They also criticized ourX2 measure, but this criticism is apparently due to a misunderstanding of the assumptions of our method and a failure to use our method in the way we described. We believe that our earlier conclusions remain unchanged. 相似文献
5.
Summary Statistical properties of Goodman et al.'s (1974) method of compensating for undetected nucleotide substitutions in evolution are investigated by using computer simulation. It is found that the method tends to overcompensate when the stochastic error of the number of nucleotide substitutions is large. Furthermore, the estimate of the number of nucleotide substitutions obtained by this method has a large variance. However, in order to see whether this method gives overcompensation when applied together with the maximum parsimony method, a much larger scale of simulation seems to be necessary. 相似文献
6.
A new method for calculating evolutionary substitution rates 总被引:39,自引:0,他引:39
Cecilia Lanave Giuliano Preparata Cecilia Sacone Gabriella Serio 《Journal of molecular evolution》1984,20(1):86-93
Summary In this paper we present a new method for analysing molecular evolution in homologous genes based on a general stationary Markov process. The elaborate statistical analysis necessary to apply the method effectively has been performed using Monte Carlo technqiues. We have applied our method to the silent third position of the codon of the five mitochondrial genes coding for identified proteins of four mammalian species (rat, mouse, cow and man). We found that the method applies satisfactorily to the three former species, while the last appears to be outside the scope of the present approach. The method allows one to calculate the evolutionarily effective silent substitution rate (vs) for mitochondrial genes, which in the species mentioned above is 1.4×10–8 nucleotide substitutions per site per year. We have also determined the divergence time ratios between the couples mousecow/rat-mouse and rat-cow/rat-mouse. In both cases this value is approximately 1.4. 相似文献
7.
Sajib Chakraborty T.M. Zaved Waise Faizule Hassan Md. Fakhrul Kabir Md. Ehsanul Hoque Mazumder Mark A. Smith 《Bioscience Hypotheses》2009,2(4):217-222
Lysogenic bacteriophages are considered as a major player for the introduction of foreign genes into bacterial strains. At the time of introduction foreign genes do not fit well into the translation system of the recipient host bacterium as they tend to retain the characteristics of the donor bacterium from which they have been transferred. Consequently foreign genes are poorly transcribed at the early phase of their evolution within the host bacterium. This is largely due to the difference in the codon usage pattern between the horizontally transferred genes and the host bacterium. In this study we present detailed analyses of various parameters of the codon usages such as codon adaptation index (CAI), mean difference (MD) of the relative adaptiveness, synonymous substitution rate (SSR) of six different phage encoded toxin genes (cholera toxin, shiga toxin, diphtheria toxin, neurotoxin C1, enterotoxin type A and cytotoxin), and proposed conceptual relationship between the evolutionary time of acquisition of the foreign genes and the selected set of parameters of the codon usage. On the basis of the observed data we hypothesize that CAI, MD and SSR of the phage encoded toxin genes are correlated with the evolutionary time of their acquisition, and have developed a novel approach based on the analyses of these parameters, which can be used to predict the evolutionary time of their acquisition by the corresponding host bacterium. 相似文献
8.
Summary A method of estimating the number of nucleotide substitutions from amino acid sequence data is developed by using Dayhoff's mutation probability matrix. This method takes into account the effect of nonrandom amino acid substitutions and gives an estimate which is similar to the value obtained by Fitch's counting method, but larger than the estimate obtained under the assumption of random substitutions (Jukes and Cantor's formula). Computer simulations based on Dayhoff's mutation probability matrix have suggested that Jukes and Holmquist's method of estimating the number of nucleotide substitutions gives an overestimate when amino acid substitution is not random and the variance of the estimate is generally very large. It is also shown that when the number of nucleotide substitutions is small, this method tends to give an overestimate even when amino acid substitution is purely at random. 相似文献
9.
A method for estimating the numbers of synonymous and nonsynonymous substitutions per site 总被引:19,自引:0,他引:19
Josep M. Comeron 《Journal of molecular evolution》1995,41(6):1152-1159
A method for estimating the numbers of synonymous (Ks) and nonsynonymous (Ka) substitutions per site is proposed. The method is based on the Li's (J Mol. Evol. 36:96–99, 1993) and Pamilo and Bianchi's (Mol. Biol. Evol. 10:271–281, 1993) method, but a putative source of bias is solved. It is proposed that the number of synonymous substitutions that are actually transitions or transversions should be computed by separating the twofold degenerate sites into two types of sites, 2S-fold and 2V-fold, where only transitional and transversional substitutions are synonymous, respectively. Kimura's (J. Mol. Evol. 16:111–120, 1980) two-parameter correcting method for multiple substitutions at a site is then applied using the overall observed synonymous transversion frequency to estimate both the numbers of synonymous transversional (Bs) and transitional (As) substitutions per site. This approach, therefore, also minimizes stochastic errors. Computer simulations indicate that the method presented gives more accurate Ks and Ka estimates than the aforementioned methods. Furthermore, the obtention of confidence intervals for divergence estimates by computer simulation is proposed. 相似文献
10.
Motoo Kimura 《Journal of molecular evolution》1981,17(2):121-122
Summary Both the maximum parsimony method of codon assignment and the augmentation procedure, as used by Goodman and his associates, are liable to serious errors and therefore should not be used for studying molecular evolution in general, and globin evolution in particular.Contribution No. 1351 from the National Institute of Genetics, Mishima, 411 Japan 相似文献