首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
The S1 gene nucleotide sequences of 10 type 3 (T3) reovirus strains were determined and compared with the T3 prototype Dearing strain in order to study sequence diversity in strains of a single reovirus serotype and to learn more about structure-function relationships of the two S1 translation products, sigma 1 and sigma 1s. Analysis of phylogenetic trees constructed from variation in the sigma 1-encoding S1 nucleotide sequences indicated that there is no pattern of S1 gene relatedness in these strains based on host species, geographic site, or date of isolation. This suggests that reovirus strains are transmitted rapidly between host species and that T3 strains with markedly different S1 sequences circulate simultaneously. Comparison of the deduced sigma 1 amino acid sequences of the 11 T3 strains was notable for the identification of conserved and variable regions of sequence that correlate with the proposed domain organization of sigma 1 (M.L. Nibert, T.S. Dermody, and B. N. Fields, J. Virol. 64:2976-2989, 1990). Repeat patterns of apolar residues thought to be important for sigma 1 structure were conserved in all strains examined. The deduced sigma 1s amino acid sequences of the strains were more heterogeneous than the sigma 1 sequences; however, a cluster of basic residues near the amino terminus of sigma 1s was conserved. This analysis has allowed us to investigate molecular epidemiology of T3 reovirus strains and to identify conserved and variable sequence motifs in the S1 translation products, sigma 1 or sigma 1s.  相似文献   

2.
We have isolated almost full-length cDNA clones corresponding to human erythrocyte membrane sialoglycoproteins alpha (glycophorin A) and delta (glycophorin B). The predicted amino acid sequence of delta differs at two amino acid residues from the sequence determined by peptide sequencing. The sialoglycoprotein delta clone we have isolated contains an interrupting sequence within the region that gives rise to the cleaved N-terminal leader sequence for the protein and represents a product that is unlikely to be inserted into the erythrocyte membrane. Comparison of the cDNA sequences of alpha and delta shows very strong homology at the DNA level within the coding regions. The two mRNA sequences are closely related and differ by a number of clearly defined insertions and deletions.  相似文献   

3.
Reovirus infections are initiated by the binding of viral attachment protein sigma1 to receptors on the surface of host cells. The sigma1 protein is an elongated fiber comprised of an N-terminal tail that inserts into the virion and a C-terminal head that extends from the virion surface. The prototype reovirus strains type 1 Lang/53 (T1L/53) and type 3 Dearing/55 (T3D/55) use junctional adhesion molecule A (JAM-A) as a receptor. The C-terminal half of the T3D/55 sigma1 protein interacts directly with JAM-A, but the determinants of receptor-binding specificity have not been identified. In this study, we investigated whether JAM-A also mediates the attachment of the prototype reovirus strain type 2 Jones/55 (T2J/55) and a panel of field-isolate strains representing each of the three serotypes. Antibodies specific for JAM-A were capable of inhibiting infections of HeLa cells by T1L/53, T2J/55, and T3D/55, demonstrating that strains of all three serotypes use JAM-A as a receptor. To corroborate these findings, we introduced JAM-A or the structurally related JAM family members JAM-B and JAM-C into Chinese hamster ovary cells, which are poorly permissive for reovirus infection. Both prototype and field-isolate reovirus strains were capable of infecting cells transfected with JAM-A but not those transfected with JAM-B or JAM-C. A sequence analysis of the sigma1-encoding S1 gene segment of the strains chosen for study revealed little conservation in the deduced sigma1 amino acid sequences among the three serotypes. This contrasts markedly with the observed sequence variability within each serotype, which is confined to a small number of amino acids. Mapping of these residues onto the crystal structure of sigma1 identified regions of conservation and variability, suggesting a likely mode of JAM-A binding via a conserved surface at the base of the sigma1 head domain.  相似文献   

4.
Two cDNA clones for glycophorin C, a transmembrane glycoprotein of the human erythrocyte which carries the blood group Gerbich antigens, have been isolated from a human reticulocyte cDNA library. The clones were identified with a mixture of 32 oligonucleotide probes (14-mer) which have been synthetized according to the amino acid sequence Asp-Pro-Gly-Met-Ala present in the N-terminal tryptic peptide of the molecule. The primary structure of glycophorin C deduced from the nucleotide sequence of the 460 base-pair insert of the pGCW5 clone indicates that the complete protein is a single polypeptide chain of 128 amino acids clearly organized in three distinct domains. The N-terminal part (residues 1-57, approximately) which is N- and O-glycosylated is connected to a hydrophilic C-terminal domain (residues 82-128, approximately) containing 4 tyrosine residues by a hydrophobic stretch of nonpolar amino acids (residues 58-81, approximately) probably interacting with the membrane lipids and permitting the whole molecule to span the lipid bilayer. Northern blot analysis using a 265-base-pair restriction fragment obtained by DdeI digestion of the inserted DNA shows that the glycophorin C mRNA from human erythroblasts is approximately 1.4 kilobases long and is present in the human fetal liver and the human K562 and HEL cell lines which exhibit erythroid features. The glycophorin C mRNA, however, is absent from adult liver and lymphocytes, indicating that this protein represents a new erythrocyte-specific probe which might be useful to study erythroid differentiation.  相似文献   

5.
Summary The complete amino acid sequence of the major sialoglycoproteins of horse erythrocyte membranes, glycophorin HA, was determined by manual sequencing methods, using tryptic, chymotryptic, and cyanogen bromide fragments. Glycophorin HA is a polypeptide chain of 120 amino acid residues and contains 10 oligosaccharide units attached to the amino-terminal side of the molecule. Its amino terminus is pyroglutamic acid. All of the oligosaccharides are linked O-glycosidically to threonine or serine residues. The amino acid sequence is consistent with the transmembrane orientation of glycophorins.There is no significant homology between the glycosylated domains of horse, human, and porcine glycophorins, but there is a considerable homology between the hydrophobic domains of the three glycophorins, which interact with the lipid bilayer of the erythrocyte membrane.  相似文献   

6.
We have developed methods for the preparative purification of two sialoglycoproteins (glycophorins B and C) from human erythrocyte membranes by high-performance ion exchange and gel permeation chromatography in the presence of Triton X-100. Glycophorin B was obtained without any detectable contaminants, and glycophorin C exhibited a purity of about 90-95%. The amino acid sequence of the intramembranous domain (residues 36-71) of glycophorin B was determined and found to be similar to that of the hydrophobic region of the major sialoglycoprotein (glycophorin A). The amino acid sequence of the hydrophobic domain (residues 49-88) of glycophorin C, that was also determined, agreed completely with the structure recently deduced from cDNA sequencing.  相似文献   

7.
The erythrocyte binding ligand 140 (EBA-140) is a member of the Plasmodium falciparum DBL family of erythrocyte binding proteins, which are considered as prospective candidates for malaria vaccine development. The EBA-140 ligand is a paralogue of the well-characterized P. falciparum EBA-175 protein. They share homology of domain structure, including Region II, which consists of two homologous F1 and F2 domains and is responsible for ligand-erythrocyte receptor interaction during invasion. In this report we describe, for the first time, the glycophorin C specificity of the recombinant, baculovirus-expressed binding region (Region II) of P. falciparum EBA-140 ligand. It was found that the recombinant EBA-140 Region II binds to the endogenous and recombinant glycophorin C, but does not bind to Gerbich-type glycophorin C, neither normal nor recombinant, which lacks amino acid residues 36–63 of its polypeptide chain. Our results emphasize the crucial role of this glycophorin C region in EBA-140 ligand binding. Moreover, the EBA-140 Region II did not bind either to glycophorin D, the truncated form of glycophorin C lacking the N-glycan or to desialylated GPC. These results draw attention to the role of glycophorin C glycans in EBA-140 binding. The full identification of the EBA-140 binding site on glycophorin C molecule, consisting most likely of its glycans and peptide backbone, may help to design therapeutics or vaccines that target the erythrocyte binding merozoite ligands.  相似文献   

8.
9.
The complete nucleotide sequence has been determined for a cloned double-stranded DNA copy of the haemagglutinin gene from the human influenza strain A/NT/60/68/29C, a laboratory-isolated variant of A/NT/60/68, an early strain of the Hong Kong subtype. The gene is 1765 nucleotides long and contains information sufficient to code for a protein of 566 amino acids, which includes a hydrophobic leader peptide (16 residues), HA1 (328), HA2 (221) and an arginine residue which joins the HA subunits. Comparison of the predicted amino acid sequence for 29C haemagglutinin with protein sequence data available for HA from other influenza strains shows that no potential coding information is lost by processing of the mRNA. A comparison of the amino acid sequences predicted from the gene sequences for 29C and fowl plague virus haemagglutinins, (1) indicates the extent to which changes can occur in the primary sequence of different regions of the protein, while maintaining essential structure and function.  相似文献   

10.
Strains of Flavobacterium psychrophilum were studied for their ability to adhere and cause agglutination of erythrocytes and yeast cells. Strains of the serotype Th showed low or no hemagglutinating (HA) properties toward human, avian, bovine, and rainbow trout erythrocytes, whereas strains of serotype Fd and Fp(T) exhibited distinct HA properties. None of the strains was able to cause agglutination of yeast cells. Greater adherence specificity toward rainbow trout blood cells was seen for the HA-positive strains. Growth at 5 degrees C, compared to that at 15 degrees C, induced an increase in the hemagglutination of some strains. HA activities of F. psychrophilum were inhibited only by sialic acid (N-acetyl-neuraminic acid), heat treatment at 65 degrees C, and proteinase K treatment and not by any of seven other carbohydrates, periodate oxidation, or treatment with trypsin. The supernatant from washed bacterial cells also showed some HA properties. All strains were shown to be highly hydrophobic by the hydrophobic interaction chromatography test, although some contradictions to the results of the salt aggregation test (showing some strains as less hydrophobic) were seen. These results indicate that the aggregation of F. psychrophilum and erythrocytes depend on a lectin present on the surface of HA-positive F. psychrophilum strains and absent on HA-negative strains. This lectin reacts specifically with sialic acid. The adhesion differences observed for F. psychrophilum strains do not appear to correlate with the virulence but still provide insights into the interaction of F. psychrophilum and rainbow trout.  相似文献   

11.
Neurotoxin cluster gene sequences and arrangements were elucidated for strains of Clostridium botulinum encoding botulinum neurotoxin (BoNT) subtypes A3, A4, and a unique A1-producing strain (HA(-) Orfx(+) A1). These sequences were compared to the known neurotoxin cluster sequences of C. botulinum strains that produce BoNT/A1 and BoNT/A2 and possess either a hemagglutinin (HA) or an Orfx cluster, respectively. The A3 and HA(-) Orfx(+) A1 strains demonstrated a neurotoxin cluster arrangement similar to that found in A2. The A4 strain analyzed possessed two sets of neurotoxin clusters that were similar to what has been found in the A(B) strains: an HA cluster associated with the BoNT/B gene and an Orfx cluster associated with the BoNT/A4 gene. The nucleotide and amino acid sequences of the neurotoxin cluster-specific genes were determined for each neurotoxin cluster and compared among strains. Additionally, the ntnh gene of each strain was compared on both the nucleotide and amino acid levels. The degree of similarity of the sequences of the ntnh genes and corresponding amino acid sequences correlated with the neurotoxin cluster type to which the ntnh gene was assigned.  相似文献   

12.
A panel of serotype 3 (T3) reovirus strains was screened to determine their relative capacities to cause lethal infection and hepatobiliary disease following peroral inoculation in newborn mice. A wide range of 50% lethal doses (LD50s) was apparent after peroral inoculation of the different virus strains. Two of the strains, T3 Abney and T3 clone 31, caused mice to develop the oily fur syndrome associated with biliary atresia. The capacity to cause biliary atresia was not related to the capacity to cause lethal infection, however, because the LD50s of T3 Abney and T3 clone 31 were grossly disparate. Examination of liver and bile duct tissues revealed histopathologic evidence of biliary atresia and hepatic necrosis in T3 Abney-infected mice but not in mice inoculated with a T3 strain of similar virulence or with the hepatotropic T1 Lang strain. The consistency with which T3 Abney-infected mice developed biliary atresia-associated oily fur syndrome permitted us to determine the viral genetic basis of reovirus-induced biliary atresia. Analysis of reassortant viruses isolated from an in vitro coinfection with T3 Abney and T1 Lang indicated a strong association of the hepatobiliary disease-producing phenotype with the T3 Abney S1 gene, which encodes the viral cell attachment protein, sigma 1. Amino acid residues within the sigma 1 protein that were unique to disease-producing T3 strains were identified by comparative sequence analysis. Specific changes exist within two regions of the protein, one of which is thought to be involved in binding to host cell receptors. We hypothesize that changes within this region of the protein are important in determining the tropism of this virus for bile-ductular epithelium.  相似文献   

13.
To define the recognition site of cytotoxic T lymphocytes (CTLs) on influenza virus H5 hemagglutinin (HA), an H5 HA-specific CTL clone was examined for the ability to recognize monoclonal antibody-selected HA variants of influenza virus A/Turkey/Ontario/7732/66 (H5N9). On the basis of 51Cr release assays with the variants, a CTL epitope was located near residue 168 of H5 HA. To define the epitope more precisely, a series of overlapping peptides corresponding to this region was synthesized and tested for CTL recognition. The minimum peptide recognized by the CTL clone encompassed residues 158 to 169 of H5 HA. Relative to the H3 HA three-dimensional structure, this CTL epitope is located near the distal tip of the HA molecule, also known as a major B-cell epitope on H3 HA. A single mutation at residue 168 (Lys to Glu) in the H5 HA variants abolished CTL recognition; this same amino acid was shown previously to be critical for B-cell recognition (M. Philpott, C. Hioe, M. Sheerar, and V. S. Hinshaw, J. Virol. 64:2941-2947, 1990). Additionally, mutations within this region of the HA molecule were associated with attenuation of the highly virulent A/Turkey/Ontario/7732/66 (H5N9) (M. Philpott, B. C. Easterday, and V.S. Hinshaw, J. Virol. 63:3453-3458, 1989). When tested for recognition of other H5 viruses, the CTL clone recognized the HA of A/Turkey/Ireland/1378/83 (H5N8) but not that of A/Chicken/Pennsylvania/1370/83 (H5N2), even though these viruses contain identical HA amino acid 158-to-169 sequences. These results suggest that differences outside the CTL epitope affected CTL recognition of the intact HA molecule. The H5 HA site defined in these studies is, therefore, important in both CTL and B-cell recognition, as well as the pathogenesis of the virus.  相似文献   

14.
H W Virgin  th  M A Mann  B N Fields    K L Tyler 《Journal of virology》1991,65(12):6772-6781
Thirteen newly isolated monoclonal antibodies (MAbs) were used to study relationships between reovirus outer capsid proteins sigma 3, mu 1c, and lambda 2 (core spike) and the cell attachment protein sigma 1. We focused on sigma 1-associated properties of serotype specificity and hemagglutination (HA). Competition between MAbs revealed two surface epitopes on mu 1c that were highly conserved between reovirus serotype 1 Lang (T1L) and serotype 3 Dearing (T3D). There were several differences between T1L and T3D sigma 3 epitope maps. Studies using T1L x T3D reassortants showed that primary sequence differences between T1L and T3D sigma 3 proteins accounted for differences in sigma 3 epitope maps. Four of 12 non-sigma 1 MAbs showed a serotype-associated pattern of binding to 25 reovirus field isolates. Thus, for reovirus field isolates, different sigma 1 proteins are associated with preferred epitopes on other outer capsid proteins. Further evidence for a close structural and functional interrelationship between sigma 3/mu 1c and sigma 1 included (i) inhibition by sigma 3 and mu 1c MAbs of sigma 1-mediated HA, (ii) enhancement of sigma 1-mediated HA by proteolytic cleavage of sigma 3 and mu 1c, and (iii) genetic studies demonstrating that sigma 1 controlled the capacity of sigma 3 MAbs to inhibit HA. These data suggest that (i) epitopes on sigma 3 and mu 1c lie in close proximity to sigma 1 and that MAbs to these epitopes can modulate sigma 1-mediated functions, (ii) these spatial relationships have functional significance, since removal of sigma 3 and/or cleavage of mu 1c to delta can enhance sigma 1 function, (iii) in nature, the sigma 1 protein places selective constraints on the epitope structure of the other capsid proteins, and (iv) viral susceptibility to antibody action can be determined by genes other than that encoding an antibody's epitope.  相似文献   

15.
The reovirus attachment protein, sigma1, is responsible for strain-specific patterns of viral tropism in the murine central nervous system and receptor binding on cultured cells. The sigma1 protein consists of a fibrous tail domain proximal to the virion surface and a virion-distal globular head domain. To better understand mechanisms of reovirus attachment to cells, we conducted studies to identify the region of sigma1 that binds cell surface carbohydrate. Chimeric and truncated sigma1 proteins derived from prototype reovirus strains type 1 Lang (T1L) and type 3 Dearing (T3D) were expressed in insect cells by using a baculovirus vector. Assessment of expressed protein susceptibility to proteolytic cleavage, binding to anti-sigma1 antibodies, and oligomerization indicates that the chimeric and truncated sigma1 proteins are properly folded. To assess carbohydrate binding, recombinant sigma1 proteins were tested for the capacity to agglutinate mammalian erythrocytes and to bind sialic acid presented on glycophorin, the cell surface molecule bound by type 3 reovirus on human erythrocytes. Using a panel of two wild-type and ten chimeric and truncated sigma1 proteins, the sialic acid-binding domain of type 3 sigma1 was mapped to a region of sequence proposed to form the more amino terminal of two predicted beta-sheet structures in the tail. This unit corresponds to morphologic region T(iii) observed in computer-processed electron micrographs of sigma1 protein purified from virions. In contrast, the homologous region of T1L sigma1 sequence was not implicated in carbohydrate binding; rather, sequences in the distal portion of the tail known as the neck were required. Results of these studies demonstrate that a functional receptor-binding domain, which uses sialic acid as its ligand, is contained within morphologic region T(iii) of the type 3 sigma1 tail. Furthermore, our findings indicate that T1L and T3D sigma1 proteins contain different arrangements of receptor-binding domains.  相似文献   

16.
Zhang D  Vik SB 《Biochemistry》2003,42(2):331-337
Subunit a of the Escherichia coli ATP synthase is thought to control access of protons to the ring of c subunits during proton-driven ATP synthesis. In this study, the surface exposure of subunit a in the periplasm has been examined using 3-N-maleimidyl-propionyl biocytin labeling in cells permeabilized by polymyxin B nonapeptide, and the helix packing at the periplasmic surface has been probed by metal-chelate mediated proteolysis. Eighteen residues between 119 and 146 were changed individually to cysteine and tested for accessibility. Positions labeled included D124 and D146, indicating a periplasmic loop of at least 23 amino acids. Residues near the ends of the transmembrane spans were tested with 5-(alpha-bromoacetamido)-1,10-phenanthroline-copper for chemical proteolysis. Only residues W241C and D44C, and to a lesser extent I43C, led to proteolytic fragments after oxidation. The fragments were sized by comparison with molecular weight standards generated by Factor Xa sites engineered into subunit a. Fragments were detected by immunoblotting using an engineered HA epitope at the carboxyl-terminal end of subunit a. The results indicated that both transmembrane span 5 (W241) and transmembrane span 1 (D44) are close to transmembrane span 2.  相似文献   

17.
A functional analysis was undertaken of the effects of mutating single amino acid residues in the alpha chain of the I-Ak molecule (to alanine; residues 50-79) on the ability of I-Ak transfectants to process and present influenza haemagglutinin to CD4+ T cell clones specific for two major antigenic sites of the HA1 subunit. In each instance, T cells were insensitive to a majority of substitutions in Ak with the exception of a few critical residues that differed for individual T cell clones. But more significantly, the failure of T cell clones to respond to mutant influenza viruses, containing drift substitutions within a T cell recognition site, in association with wild type I-Ak, could be reversed by single substitutions in Ak alpha. A T cell clone specific for HA1 120-139 failed to respond to a laboratory mutant virus (HA1 135 Gly----Arg) whereas optimal responses were observed with a mutant Ak transfectant (Ak alpha 56 Arg----Ala). Similarly, mutant transfectant 62 (Ak alpha 62 Gly----Ala) was able to present a natural variant virus A/TEX/77 to a T cell clone specific for HA1 48-67. We propose that Ak alpha 56 and Ak alpha 62 increase the affinity of association of mutant HA1 peptides for class II and therefore confer T cell recognition of variant viruses.  相似文献   

18.
The intracellular hemoglobin of the polychaete Glycera dibranchiata consists of several components, some of which self-associate into a "polymeric" fraction. The cDNA library constructed from the poly(A+) mRNA of Glycera erythrocytes (Simons, P. C., and Satterlee, J. D. (1989) Biochemistry 28, 8525-8530) was screened with two oligodeoxynucleotide probes corresponding to the amino acid sequences MEEKVP and AMNSKV. Each of the two probes identified a full-length positive insert; these were sequenced using the dideoxynucleotide chain termination method. One clone was 630 bases long and contained 36 bases of 5'-untranslated RNA, a reading frame of 441 bases coding for the 147 amino acids of globin P2 including the residues MEEKVP, and a 3'-untranslated region of 153 bases. The other clone was 540 bases long and contained 24 bases of 5'-untranslated RNA, an open reading frame of 441 bases coding for globin P3 including the residues AMNSKV, and a 3'-untranslated region of 75 bases. The inferred amino acid sequences of the two globins were in agreement with the partial amino acid sequences obtained by chemical methods. The P2 and P3 globin sequences, together with the previously determined P1 sequence of a complete insert and partial sequences P4, P5, and P6 obtained from partial inserts (Zafar, R. S., Chow, L. H., Stern, M. S., Vinogradov, S. N., and Walz, D. A. (1990) Biochim. Biophys. Acta, in press) suggest that there are at least six components in the polymeric fraction of Glycera hemoglobin, which is in agreement with the results of polyacrylamide gel electrophoresis in Tris/glycine buffer, pH 8.3, 6 M urea. Nothern and dot blot analyses of Glycera erythrocyte poly(A+) mRNA using the foregoing two cDNA probes clearly demonstrated the presence of mature messages encoding both types of globins. Comparison of the polymeric sequences P1, P2, and P3 with the "monomeric" globins M-II and M-IV using the alignment and templates of Bashford et al. (Bashford, D., Chothia, C., and Lesk, A. M. (1987) J. Mol. Biol. 196, 199-216) showed that all five globins have identical residues at 39 positions. At 44 positions, the three polymeric globins share identical residues that differ from the identical residues at the corresponding locations in the monomeric sequences M-II and M-IV including position E7, where the latter have leucine instead of the distal histidine. At 15 positions, there occurs an alteration from polar to nonpolar or from a small nonpolar to a larger nonpolar residue in going from the monomeric to the polymeric globins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The N-terminal amino acid sequence (residues 1--35) of the Ss sialoglycoprotein (or glycophorin B) from human erythrocyte membranes of defined Ss blood group activity was determined by manual sequencing methods, using N-terminal tryptic or chymotryptic glycopeptides and various secondary peptides. The proposed structure differs considerably from that suggested on the basis of work with glucopeptides of unknown Ss blood group activity (Furthmayr, Nature 271, 519--523, 1978). Only one difference between glycopeptides from Ss and ss erythrocytes was found, i.e. a methionine/threonine polymorphism at position 29. On the basis of previous work (Dahr et al., Hoppe-Seyler's Z. Physiol. Chem. 361, 145--152, 1980), it is concluded that this amino acid heterogeneity represents the Ss polymorphism rather than the UX or UZ polymorphisms, which are in strong genetic linkage disequilibrium with the Ss antigens. A part of the sequence (residues 9--30) of the major (MN) red cell membrane sialoglycoprotein (glycophorin A) was re-investigated and revised at positions 11 and 17. As judged from the present data, the first 26 residues of the Ss and the blood group N-specific MN glycoprotein are identical. The sequence 27--35 of the Ss glycoprotein shows a homology with the residues 56--64 and 59--67 of the MN glycoprotein. Data on the partial N-terminal sequence of glycopeptides from a third erythrocyte membrane sialoglycoprotein (component D or glycophorin C) indicate that its structure is different from those of the two other glycoproteins.  相似文献   

20.
Previous studies of the attachment of encephalomyocarditis (EMC) virus to human erythrocytes concluded that the glycophorins, a family of human erythrocyte sialoglycoproteins, act as EMC virus receptors. Evidence is presented that the major glycophorin species, glycophorin A, is the receptor for EMC virus attachment to human erythrocytes. Comparison of the structures of glycophorins A and B and sialoglycopeptides released by chymotrypsin and trypsin treatment of erythrocytes confirmed our previous suggestion (A. T. H. Burness and I. U. Pardoe, J. Gen. Virol. 64:1137-1148, 1983) that attachment of EMC virus to glycophorin A involves the region containing amino acids 35 to approximately 70 (numbered from the NH2 terminus), four of which (amino acids 37, 44, 47, and 50) are glycosylated. In addition, we provide evidence that the segment containing amino acids 35 to 39 with an oligosaccharide side chain on threonine-37 is particularly important for EMC virus attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号