首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The development time for eggs and nymphs and female fertility were determined for Nesidiocoris tenuis Reuter (Het., Miridae: Dicyphini) at 15, 20, 25, 30, 35 and 40 ± 1°C, using tomato, Solanum esculentum (Miller), as substrate and eggs of Ephestia kuehniella Zeller as substitute prey. At 40°C, N. tenuis was unable to develop and barely reproduced. Egg development ranged from 30.8 days at 15°C to 6.3 days at 35°C. The cumulative thermal requirements for the eggs were 148.6 degree days (°d) and the lower thermal threshold, 10.3°C. The duration of the nymphal instar decreased from 55.9 days at 15°C to 8.6 days at 35°C. The thermal constant for the nymphs was 182.3 °d and the lower thermal threshold 11.7°C. No nymphs survived at 40°C, and the highest mortalities were at extreme temperatures (15 and 35°C). Female and male weights were influenced significantly by temperature. The fertility of N. tenuis females was reduced greatly at 15 and 40°C. The highest fertility during an observation period of 18 days following female emergence (79.5–60.0 nymphs per female) was within the temperature range of 20 to 35°C. Fertility was related directly to female weight and temperature (r2 = 0.932). Based on development, reproduction data and thermal requirements, the optimum temperature range for N. tenuis was established as being between 20 and 30°C. Overall, N. tenuis is the most thermophilous of all dicyphines from vegetable crops in the Mediterranean area studied so far.  相似文献   

2.
The development, survivorship, longevity, reproduction, and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama were evaluated at 10°C, 15°C, 20°C, 25°C, 28°C, 30°C and 33°C. The populations reared at 10°C and 33°C failed to develop. Between 15°C and 30°C, mean developmental period from egg to adult varied from 49.3 days at 15°C to 14.1 days at 28°C. The low‐temperature developmental thresholds for 1st through 5th instars were estimated at 11.7°C, 10.7°C, 10.1°C, 10.5°C and 10.9°C, respectively. A modified Logan model was used to describe the relationship between developmental rate and temperature. The survival of the 3rd through 5th nymphal instars at 15–28°C was essentially the same. The mean longevity of females increased with decreasing temperature within 15–30°C. The maximal longevity of individual females was recorded 117, 60, 56, 52 and 51 days at 15°C, 20°C, 25°C, 28°C and 30°C, respectively. The average number of eggs produced per female significantly increased with increasing temperature and reached a maximum of 748.3 eggs at 28°C (P<0.001). The population reared at 28°C had the highest intrinsic rate of increased (0.199) and net reproductive rate (292.2); and the shortest population doubling time (3.5 days) and mean generation time (28.6 days) compared with populations reared at 15–25°C. The optimum range of temperatures for D. citri population growth was 25–28°C.  相似文献   

3.
The life table of the indigenous Neoseiulus californicus was studied at different temperatures and 65 ± 5% relative humidity under conditions of 16 h light : 8 h dark (LD 16:8). The total developmental period from egg to adult varied from 3.0 to 14.0 days at 15 to 35°C. Survival to adulthood ranges from 86.21 to 93.94%, with the highest rate at 25°C. The lower threshold temperature from egg to adult stages of females and males was 10.84 and 10.72°C, respectively, and the thermal constant was 57.14 degree‐days (DD) for females and 56.18 DD for males. Total number of eggs laid by each female was the highest (70.38 eggs) at 25°C, whereas average daily fecundity was the highest (3.69 eggs/female/day) at 30°C. The net reproductive rate was the highest (48.49) at 25°C and lowest (26.18) at 30°C. Mean generation time decreased from 19.04 to 11.47 days with increasing temperature from 20 to 30°C. Both intrinsic rate of natural increase (0.284) and finite rate of increase (1.32) were maximum at 30°C. Adult longevity was the highest (42.75 days for females and 32.60 days for males) at 20°C and lowest (22.70 days for females and 15.30 days for males) at 30°C. Sex ratio was female biased and was the highest (78.08) at 25°C and lowest (70.24) at 30°C. Developmental data of five constant temperatures, temperature thresholds and thermal requirements may be used to predict the occurrence, number of generations and population dynamics of N. californicus as an important biocontrol agent of Tetranychus urticae.  相似文献   

4.
5.
This study evaluated the thermal requirements for development of the cotton mealybug Phenacoccus solenopsis depending on different biological parameters on Okra leaves Abelmoschus esculentusat under two constant temperatures (20 and 30 °C) at (RH 65%, 12:12 h. light/dark). The effect of temperature on eggs was ineffective since it hatched shortly to first nymphal instars after deposition. While the tested temperature caused significant effects on nymphal durations, pupation rate (pre-male stage), females emergence %, pre-oviposition, longevity, post-oviposition periods and fecundity in females (egg deposition, ovisacs numbers and hatchability %). The thermal constant and developmental zero were calculated to be 7.29 °C and 79.9 degree-days (DDs) for eggs, 11.67 °C and 272.9 DDs for nymphal stages, 11.06 °C and 46.4 DDs for males and then 3.31 °C and 554.1 DDs for females, respectively. The duration of the life cycle was 65.6 ± 10.36 days at 20 °C; this was shortened to 35.51 ± 1.12 days at 30 °C. The thermal requirements to complete the insect development for one generation was 8.2 °C for the developmental zero and 774.1 DDs for the thermal constant. Based on the thermal requirements values, the average life cycle duration from January to December 2016 was 61.78 days and the number of annual generations was 7.143 when the average annual temperature was 23.29 °C.  相似文献   

6.
The zoophytophagous plant bug Nesidiocoris tenuis (Reuter) is increasingly used for biological control of various agricultural pests. Its native range includes Southern Europe, North Africa, Southern and South‐Eastern Asia, although only the Mediterranean strains have been studied experimentally. We investigated effects of temperature and photoperiod on nymphal survival and development, rate of female maturation and egg load in two strains of N. tenuis originating from temperate and subtropical regions of South‐Eastern Asia: the ‘Temperate strain’ (from Suwon, Republic of Korea, yearly average air temperature is 13.3°C) and the ‘Subtropical strain’ (from Miyazaki, Japan, yearly average air temperature is 18.2°C). Nymphs and adults were reared on tomato leaflets and fed with eggs of the grain moth Sitotroga cerealella under four temperatures (15, 20, 25 and 30°C) and three photoperiods (10, 12 and 14 h of light per day). In spite of long‐term (40–50 generations) rearing under constant laboratory conditions, the studied strains still show a correlation between thermotolerance indices and climate at origin. In particular, at the low temperature of 15°C, survival of nymphs of the Temperate strain was double that of the Subtropical strain, whereas at the higher tested temperatures, survival of the Subtropical strain was not significantly different or even was higher than that of the Temperate strain. The duration of nymphal development in the Temperate strain was significantly shorter than that in the Subtropical strain at 15–25°C, but not at 30°C. In both strains, nymphal survival, duration of nymphal development and rate of female maturation were not significantly dependent on photoperiod, and diapause was not observed under any conditions tested. We conclude that the Subtropical strain of N. tenuis is better adapted to high temperatures, whereas the Temperate strain is more promising for application in greenhouses at medium and low temperatures.  相似文献   

7.
  1. At temperature levels from 10 to 25°C animals from resting eggs produce subitaneous eggs independent on temperature. In contrast animals from subitaneous eggs produce subitaneous eggs dependent on temperature. At a high rate subitaneous eggs are only formed at temperature levels above 20°C.
  2. Below 10°C no development occurs in the juveniles. At temperatures of 30/22°C (24.7°C) the first subitaneous eggs are formed after 6–9 days, at 14/9°C (10.7°C) they are formed after 34 days. At different temperature levels the developmental rate of the young is from 10.5 to 42 days. One generation extends over 16.5 (30/22°C) to 75 days (14/9°C). The average egg production is 10–20 subitaneous eggs or 30–60 resting eggs. The maximum egg production of one individual is 50 subitaneous eggs or 84 resting eggs. 50% of the animals have just formed resting eggs, before the juveniles are hatched. Resting eggs in the first egg-batch are formed 6–20 days later than subitaneous eggs. The duration of life is between 65 (30/22°C) and 140 days (19/13°C).
  3. Young worms in resting eggs have a dormance period of at least 15–30 days.
At room temperatures (20°C) no juvenile in resting eggs hatches from water. By combining room and refrigerator (3.5°C) temperatures the hatching rate increases to a maximum of 85%. To reach a hatching rate of 50–65% the influence of low temperatures must be at least 30 days. At room temperatures 60% of the young in resting eggs hatch from mud covered with water. Combining high and low temperatures the hatching success is between 67 and 81%, where the highest percentage of the young may hatch at room temperature. Up to 90 days low temperatures cause a maximum hatching rate of 79%. It decreases to approximately 30% after 180 days. At high temperatures resting eggs preserved in 100% moist mud, survive for two months. By adding a period of low temperatures the hatching rate increases to a maximum of 52%. Low temperatures are survived for more than 6 months. Up to 30 days preservation at 3.5°C causes a maximum hatching rate of 61%, up to 12o days it decreases to 30%. At room temperature the young in resting eggs are not resistant against air-dried mud (30–40% rel. air moisture). Combining high and low temperatures air-dried mud is endured 1 month (hatching rate 5–14%). Preservation of 30–120 days at 3.5°C and 70% rel. air moisture result in a hatching rate of 43–61%. li]4. In the open air in Middle-Europe there occur 5–6 generations of M. ehrenbergii per life-cycle. The first generation hatches from resting eggs in May, where the production of subitaneous eggs is independent on temperature. All other generations up to October hatch from subitaneous eggs. The egg-production of those worms is dependent on environmental factors. In summer subitaneous egg production prevails, in autumn resting egg production. The abundance during the life-cycle is dependent on the number of animals which produce subitaneous eggs. Resting eggs are predestinated to endure periods of dryness and cold. The life-cycles of the species M. lingua and M. productum are different from those of M. ehrenbergii in length and in the number of generations. In both species 7 generations occur over 8 to 8.5 respectively 5.5 months. M. nigrirostrum only forms resting eggs. The life-cycle consists of one generation from February/March to May/June.  相似文献   

8.
Laboratory studies were conducted to assess the effect of temperature on the development of the eggs of Dociostaurus maroccanus (Thunberg) (Orthoptera, Acrididae) during anatrepsis (stages I–XIV) and during catatrepsis (stages XV–XX). The developmental rates of anatrepsis were studied at five constant temperatures ranging from 10 to 30°C. Egg development occurred over the entire range but at 10°C the embryos were unable to complete anatrepsis. The relationship between temperature and developmental times for completing anatrepsis was analysed by the non‐linear Logan type III model. The optimal temperature estimated for the development of eggs during anatrepsis was 24.7°C; the lower and upper thermal thresholds were 9°C and 31°C, respectively. Once the embryos completed anatrepsis, only those incubated at 15°C continued morphogenesis beyond stage XIV (diapause stage) without a low‐temperature exposure period. The developmental rate of catatrepsis was studied at four constant temperatures ranging from 15°C to 30°C after exposure to low‐temperature, 10°C, for 30, 60 or 90 days. For catatrepsis, temperature and developmental time were linearly and inversely related. Linear regression was used to estimate the lower developmental threshold and the degree days requirements for catatrepsis. Both decreased with longer exposure to the low temperature; the former from 13.8°C to 10.5°C and the latter from 212.8 to 171.5 degree days, following 30 and 90 days at 10°C, respectively. Our results improve the ability of decision support systems for Mediterranean locust pest management by providing better forecasts to land managers and pest advisors.  相似文献   

9.
The effects of temperature on adult lifespan, reproduction, and oviposition behaviour of Grapholita lobarzewskii Nowicki (Lepidoptera: Tortricidae) were studied under controlled and semi‐field conditions to improve the basis for phenological forecasting. The average female lifespan ranged from 18.9 days at 25.1 °C to 65.3 days at 11.0 °C. For adult female ageing, a lower thermal threshold (THR) of 8.6 °C and a thermal constant (K) of 298 degree days (dd) were established. At constant temperatures, fecundity ranged from 0.3 eggs per female at 11.0 °C to 107 eggs per female at 21.2 °C. The highest fecundity of 127 eggs per female was observed at fluctuating temperatures. Oviposition lasted on average 350 dd, but 50% of the eggs were laid within the first 100 dd after adult emergence. Grapholita lobarzewskii had a distinct circadian rhythm for oviposition. Females began to lay eggs at ca. 16:00 hours and ceased at 24:00 hours with the peak occurring generally at 19:00 hours. Females reacted very sensitively to sudden temperature changes. A temperature drop of 3.1 °C could cause a 1‐day interruption of oviposition.  相似文献   

10.
This paper presents the results of the first comprehensive study of the biology of a tropical bush-cricket. The eggs were laid without any external protective structures and lost water readily in unsaturated air; losses of more than 16% of the original fresh weight were usually fatal. Development and hatching took place only if the eggs were in contact with water. The water content increased by about 500% during development. The mean incubation period was 171 and 116 days at constant temperatures of 20oC and 28oC, respectively, but at temperatures fluctuating by±3°C about a mean of 28°C this period was reduced to a mean of 88 days. The eggs failed to develop if exposed to freezing temperatures for more than five days or kept at a constant temperature of 307deg;C or above. The duration of the nymphal period varied from 83 to 131 days at a temperature range of 22–30°C (mean 26° C). There were four or five nymphal instars in the male and five or six in the female. The linear growth of the hind femur conformed to Dyar's law. There was a conspicuous colour change during development, all the first-instar nymphs being leaf green and the adults predominantly brown. In nature the species lives exclusively on the forest floor and is markedly nocturnal in habits, hiding underneath litter during the day. The eggs are dormant during the dry season, hatching at the onset of the rains (March/April at Ibadan). The nymphs reach maturity from July onwards and the adults have mostly died off by the end of the rainy season (October). In the laboratory the species was found to have a temperature preference of 26–32°C, immobilization setting in at 18°C and 42°C, and a humidity preference of 60–80% R.H.; this corresponds with the prevailing conditions in its forest habitat. The nocturnal pattern of activity persisted for several days in continuous darkness, with no marked acceleration. Movement was inhibited for several days by artificial illumination. Reversed illumination reversed the rhythm of activity.  相似文献   

11.
Tetraphleps galchanoides Ghauri (Hemiptera: Anthocoridae) nymphs were collected from hemlock woolly adelgid (HWA) Adelges tsugae Annand (Hemiptera: Adelgidae) infested Tsuga sp. in Baoxing, Sichuan, China. First and second stage nymphs collected from foliage shipped from China; were reared to adults and tested for feeding rates and host preferences. They were reared at 5, 8, 12, and 15 ± 1 °C from November to December, January to March, April, and May to June, respectively, in the quarantine laboratory at Virginia Polytechnic Institute and State University. At 8 °C, development time was 15, 20, and 40 days for the N-III, IV, and V nymphal stages, respectively. Adult males lived 83 days with a range of 21–147 days. A single adult female lived for 21 days. At 5 °C, second stage T. galchanoides nymphs consumed 0.8 HWA nymphs per day, and 2.0 HWA nymphs per day at the N-V stage. At 8 °C, consumption of HWA nymphs ranged from 1.3 to 3.4 nymphs per day for the N-III to N-V stages, respectively. Adult T. galchanoides consumed more HWA eggs than HWA adults, pine bark adelgid (PBA) Pineus strobi (Hartig) (Hemiptera: Adelgidae) adults, and eggs in no-choice tests. In choice tests with HWA eggs and PBA eggs, more HWA eggs were eaten. Adult and nymph body measurements are presented for determination of nymphal instars.  相似文献   

12.
The effect of temperature on the development and fecundity of Sancassania polyphyllae fed on tissues of Polyphylla fullo larvae was studied at 15, 20, 25, 30, and 35 ± 1°C and 65 ± 10% RH in a dark incubator. Mean developmental period of immature stages decreased significantly with increasing temperatures from 15 to 30°C. Developmental periods at 30–35°C were not significantly different. The estimated lower developmental thresholds of the various immature stages ranged between 10.1 and 11.5°C. The thermal constant for the egg-to-female adult was 93.5 degree-days. The pre-oviposition, oviposition, and post-oviposition periods and female longevity were significantly longer at 15°C than at higher temperatures. Mean total and daily fecundity were the highest at 25°C, which were significantly different from those obtained at 15, 20 and 30°C. The net reproductive rate (R 0) was the highest at 25°C (588.3 ♀/♀). The longest mean generation time (T 0) occurred at 15°C (36 days) and the shortest occurred at 30°C (9.2 days). The highest intrinsic rate of increase (r m) for S. polyphyllae was observed at 25 (0.61 ♀/♀/day) and 30°C (0.62 ♀/♀/day).  相似文献   

13.
The timing of oviposition and hatching of Ixodes pacificus was investigated in the field and at constant temperatures in the laboratory. Replete females held at temperatures between 9 and 29°C began depositing eggs a mean of 9–70 days after drop off. Egg masses held between 12 and 25°C commenced hatching 25–178 days after the onset of oviposition. Eggs held at 9 or 29°C did not hatch. The lower temperature thresholds for development (LTD) for oviposition and hatching were 6.5 and 9°C, respectively. The number of degree days required for oviposition and hatching was 173 and 588, respectively. Replete females placed in the field on 2 December through to 8 March deposited eggs from 2 February through to 24 April; the eggs commenced hatching between 2 July and 21 August. Unfed larvae from two of 20 egg masses survived through the winter and fed readily when exposed to deer mice (Peromyscus maniculatus) on 22 April. Replete larvae were returned to the field and moulted between 9 and 21 August. Larvae exposed to deer mice in August, 4 weeks after hatching, also fed readily. Although further studies are needed to clarify the timing of nymphal development, the present study suggests that I. pacificus requires more than 1 year to complete its life cycle.  相似文献   

14.
The effect of four constant temperatures on the life history of Cirrospilus sp. near lyncus was examined in the laboratory. This species is one of the most abundant generalist indigenous parasitoids of the citrus leafminer, Phyllocnistis citrella Stainton, in Spain. Adult lifespan of C. sp. near lyncus decreased from 50.2 to 9.1 days as temperatures increased from 15 to 30°C, respectively. Both gross fecundity and host-feeding were highest at 20°C (170.48 eggs and 32.33 hosts). Oviposition rates were optimal at higher temperatures (5.22 eggs per day at 25°C and 4.79 eggs per day at 30°C) and were dependent on female age. In contrast, host-feeding rates for a given temperature did not depend on age. Generation time decreased with increasing temperatures from 68.05 days at 15°C to 12.19 days at 30°C. Net reproduction peaked at 20°C (68.86 viable females per female). Intrinsic rate of increase doubled from 15°C (0.059 females per female per day) to 20°C (0.127 females per female per day) and almost doubled again from 20 to 30°C (0.210 females per female per day). Given these parameters, C. sp. near lyncus could perform optimally in the area occupied by P. citrella in the Mediterranean region.  相似文献   

15.
The cabbage stem flea beetle, Psylliodes chrysocephala (L.) (Coleoptera: Chrysomelidae), is a major pest of winter oilseed rape. Despite the importance of this pest, detailed information on reproduction to predict risk of crop damage is lacking. This study investigates the effect of temperature on parameters of reproduction, egg development and viability at five constant temperatures. Significant temperature effects were found on the pre‐oviposition period, total number of eggs laid, daily oviposition rate, female longevity, egg‐development rate and viability. The mean length of the pre‐oviposition period ranged from 93.1 days at 4°C to 14.6 days at 20°C. Analysis of total number of eggs laid and daily oviposition rate during female lifespan estimated the highest total number of eggs laid (696 eggs/female) at 16°C and the highest oviposition rate (6.8 eggs/female and day) at 20°C. The daily oviposition rate at 20°C was not significantly higher than 5.4 eggs/female and day at 16°C. Female longevity was significantly longer at 4°C, shorter at 20°C and not significantly different between 8, 12 and 16°C. Estimated 50% survival time of females was 239, 153, 195, 186 and 78 days at 4, 8, 12, 16 and 20°C, respectively. A linear model of egg development at 8–20°C estimated the lower developmental threshold to be 5.1°C and the thermal constant for development 184.9 degree‐days. The percentage of eggs hatching was significantly lower at 4°C than at all other temperatures tested. The estimated mean hatching percentages were 47.3%, 70.0%, 72.4%, 66.2% and 67.9% at 4, 8, 12, 16 and 20°C, respectively. These results can be used to predict the start and intensity of egg‐laying in the autumn and the appearance of larvae in the field from knowledge about time of field invasion and from monitoring the weather.  相似文献   

16.
The effect of temperature on the ovipositional biology ofBoophilus annulatus (Say) was determined under laboratory conditions. Engorged females subjected to constant temperatures of 12 and 45°C died without ovipositing, while females held at 15 and 40°C laid eggs which did not hatch. The preoviposition period at 25–40°C was 2–3 days; however, significant increases occurred at 20°C (5.2 days) and at 15°C (16.3 days). The number of eggs laid per female was ca. 2700 at temperatures of 25–35°C, but decreased significantly at 20°C (ca. 2300 eggs/female), 15°C (ca. 1800 eggs/female), and at 40°C (ca. 300 eggs/female). No differences were observed in the Conversion Efficiency Index (CEI) values at temperatures of 20–30°C (ca. 50%), while temperatures of 15 and 40°C produced the lowest CEI values at 35.6 and 4.9%, respectively. Hatch-ability of eggs was ca. 80% at temperatures of 20–35°C. Incubation period of eggs ranged from 52.2 days at 20°C to 16.2 days at 35°C. The thermal threshold for egg development determined by linear regression was 12.9°C. Females subjected to four fluctuating temperature regimes produced no differences in number of eggs/female (ca. 2400), CEI (ca. 50%), or hatchability of eggs (ca. 75%). Preoviposition period and incubation were significantly affected by a change in the thermoperiod, becoming longer in duration as the temperatures were decreased. From studying females exposed for various intervals from 0 to 105 days at 12°C, indications were that the longer the exposure period the more adverse the effects were on oviposition and egg-hatch. Correspondingly, exposure of eggs to a temperature of 15°C for up to 105 days gave indications that the longer the eggs remained at 15°C, the lower the hatch would be after transfer back to a temperature of 25°C.  相似文献   

17.
As a part of ecological studies onHaemaphysalis longicornis, the effects of controlled temperatures (12, 15, 20, 25 and 30°C; 100% RH) on development and growth of the tick were investigated and the critical low temperature for each stage in the life cycle was estimated. As the temperature became low, the periods of preoviposition, oviposition, egg hatching (incubation) and moulting were prolonged. At 12°C, however, oviposition, egg hatching and moulting of the larva and nymph did not occur. The critical low temperatures for oviposition, egg hatching (developmental zero) and larval and nymphal moulting which were calculated theoretically from the regression equations, were 11.1, 12.2, 10.2 and 11.8°C, respectively. The temperature also affected the egg productivity and hatch-ratio. The number of deposited eggs per mg of body weight decreased markedly at 15°C, and the hatch-ratio was lowered with dropped temperatures.  相似文献   

18.
Reproduction, survival, and life table parameters of the predatory mite Cheyletus malaccensis Oudemans were evaluated at six constant temperatures: 17.5, 20, 25, 30, 32.5 and 35°C, feeding on Tyrophagus putrescentiae (Schrank). Preoviposition period of fertilized and virgin females varied with temperature from ca. 9 days at 17.5°C to ca. 1.5 day at 32.5°C and then increased to ca. 3 days at 35°C. Virgin female oviposition period was significantly shorter than for fertilized females at the temperatures examined with the exception of 17.5°C. The mean total number of eggs per fertilized (169.7 ± 6.6) and virgin female (60.7 ± 4.3) was highest at the temperature of 30°C. The data indicated a significant positive and nearly doubling effect of fertilization on female fecundity at the temperatures examined with the exception of 17.5°C. Age-specific fecundity was described by a temperature dependent model from which the maximum daily fecundity rate was estimated for fertilized and virgin females at 10.3 (at 30°C) and 6.8 (at 32.5°C) eggs/female, respectively. Virgin female longevity was significantly shorter than for fertilized females at 20, 30 and 32.5°C, and decreased from ca. 57 days at 17.5°C to ca. 17 days at 35°C. The Weibull function that was used to describe the age specific survival of fertilized and virgin females produced excellent fits to the survival data. Estimates of intrinsic rate of increase, net reproductive rate, mean generation time, doubling time and finite rate of increase, were obtained. The rm value increased with temperature from 0.03 (day−1) at 17.5°C to 0.21 (day−1) at 32.5°C, after which it decreased to 0.15 (day−1) at 35°C. These data indicate that C. malaccensis can reproduce at temperatures between 17.5 and 35°C and can be used for biological control of astigmatid mites within the temperature range where the pest occurs.  相似文献   

19.
Temperature-dependent development and oviposition component models were developed for Deraeocoris brevis (Uhler) (Hemiptera: Miridae). Egg development times decreased with increasing temperature and ranged from 35.8 d at 15 °C to 6.7 d at 32 °C. Total development times of nymphs reared on frozen Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) eggs decreased from an estimated 55.6 d at 15 °C to 9.2 d at 32 °C and 10.0 d at 34.6 °C. By fitting linear models to the data the lower developmental threshold temperatures for eggs, small nymphs (1st to 3rd instar), large nymphs (4th to 5th instar), and all nymphs combined were calculated as 10.5, 12.5, 11.8, and 11.9 °C, respectively. The thermal constants were 144.1, 90.3, 95.0, and 190.8 degree-days for each of the above stages. The non-linear model was based on a Gaussian equation, which fit the relationship between development rate and temperature well for all stages. The Weibull function provided a good fit for the distribution of development times of each stage. Adult longevity decreased with increasing temperature and ranged from 52.9 d at 21.7 to 16.8 d at 32.0 °C. D. brevis had a maximum fecundity of 471 eggs per female at 24 °C, which declined to 191 eggs per female at 32 °C. Also, three temperature-dependent components for an oviposition model of D. brevis were developed including models for total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate.  相似文献   

20.
The effects of temperature on the development and survival of Lycaeides argyrognomon were examined in the laboratory. The eggs, larvae and pupae were reared at temperatures of 15, 17.5, 20, 25, 30 and 33°C under a long‐day photoperiod of 16‐h light and 8‐h darkness. The survival rates of the first–third instars ranged from 40.0 to 82.4%. The mortalities of the fourth instar were lower than those of the first–third instars. The development time of the overall immature stage decreased from 78.33 days at 15°C to 21.07 days at 30°C, and then increased to 24.33 days at 33°C. The common linear model and the Ikemoto–Takai model were used to estimate the thermal constant (K) and the developmental zero (T0). The values of T0 and K for the overall immature stages were 10.50°C and 418.83 degree‐days, and 9.71°C and 451.68 degree‐days by the common model and the Ikemoto–Takai model, respectively. The upper temperature thresholds (Tmax) and the optimal temperatures (Topt) of the egg, the first–third instars and the overall immature stages were estimated by the three nonlinear models. The ranges of Topt estimated were from 30.33°C to 32.46°C in the overall immature stages and the estimates of Tmax of the overall immature stages by the Briere‐1 and the Briere‐2 models were 37.18°C and 33.00°C, respectively. The method to predict the developmental period of L. argyrognomon using the nonlinear models was discussed based on the data of the average temperature per hour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号