首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Normal and neoplastic human breast tissue as well as lactating and nonlactating rat mammary glands and 7,12-dimethylbenz(alpha)-anthracene-induced mammary adenocarcinomas of rat, were examined by indirect immunofluorescence microscopy using guinea pig antibodies to human and bovine epidermal prekeratin and to cytokeratin polypeptide D from mouse hepatocytes. In normal mammary glands of both species, lactating rats included, the antibodies raised against human and bovine epidermal prekeratins strongly stained ductal and myoepithelial cells, whereas antibodies to hepatic cytokeratin D revealed, in addition, fibrillar staining in cells of the alveolus-like terminal lobular units and in milk secreting cells of the rat. The presence of some finely dispersed intermediate-sized filaments of the cytokeratin type in lactating alveolar cells of rat mammary gland was also demonstrated by electron microscopy. In human intraductal mammary carcinomas the antibodies to epidermal prekeratins showed staining in myoepithelial cells and intralumenal papillary protrusions of the tumor, whereas the antibodies to hepatic cytokeratin D presented an almost complementary pattern in that they showed strongest staining in the more basally located layers of tumor cells. Intraductal adenocarcinomas of rats showed strong staining with all keratin antibodies examined. In contrast to previous studies using exclusively antisera raised against epidermal prekeratin, out results show that all types of neoplastic and non-neoplastic epithelial cells of mammary gland of both species contain-at least some-filaments of the cytokeratin type identifiable by immunologic reaction, if antibodies are used that recognize a broad range of epidermal and nonepidermal cytokeratins. Consequently, such broad range antibodies to keratin-like proteins provide adequate tools to identify and characterize neoplastic and non-neoplastic epithelial cells and to eliminate false negative immunocytochemical findings in tumor diagnosis. In addition, our observation that in the same human carcinoma two cell types can be distinguished by their reaction with two different antibodies to cytokeratins from epidermis and liver, respectively, indicates that the cells of a given carcinoma can differ in their cytoskeletal composition, thus presenting further criteria for diagnostic differentiation.  相似文献   

2.
Myoepithelial cells from mammary glands, the modified sweat glands of bovine muzzle, and salivary glands have been studied by electron microscopy and by immunofluorescence microscopy in frozen sections in an attempt to further characterize the type of intermediate-sized filaments present in these cells. Electron microscopy has shown that all myoepithelial cells contain extensive meshworks of intermediate-sized (7--11-nm) filaments, many of which are anchored at typical desmosomes or hemidesmosomes. The intermediate-sized filaments are also intimately associated with masses of contractile elements, identified as bundles of typical 5--6-nm microfilaments and with characteristically spaced dense bodies. This organization resembles that described for various smooth muscle cells. In immunofluorescence microscopy, using antibodies specific for the various classes of intermediate-sized filaments, the myoepithelial cells are strongly decorated by antibodies to prekeratin. They are not specifically stained by antibodies to vimentin, which stain mesenchymal cells, nor by antibodies to chick gizzard desmin, which decorate fibrils in smooth muscle Z bands and intercalated disks in skeletal and cardiac muscle of mammals. Myoepithelial cells are also strongly stained by antibodies to actin. The observations show (a) that the epithelial character, as indicated by the presence of intermediate-sized filaments of the prekeratin type, is maintained in the differentiated contractile myoepithelial cell, and (b) that desmin and desmin-containing filaments are not generally associated with musclelike cell specialization for contraction but are specific to myogenic differentiation. The data also suggest that in myoepithelial cells prekeratin filaments are arranged--and might function--in a manner similar to the desmin filaments in smooth muscle cells.  相似文献   

3.
The goat was chosen as the model system for investigating mammary gland development in the ruminant. Histological and immunocytochemical staining of goat mammary tissue at key stages of development was performed to characterize the histogenesis of the ruminant mammary gland. The mammary gland of the virgin adult goat consisted of a ductal system terminating in lobules of ductules. Lobuloalveolar development of ductules occurred during pregnancy and lactation which was followed by the regression of secretory alveoli at involution. The ductal system was separated from the surrounding stroma by a basement membrane which was defined by antisera raised against laminin and Type IV collagen. Vimentin, smooth-muscle actin and myosin monoclonal antisera as well as antisera to cytokeratin 18 and multiple cytokeratins stained a layer of myoepithelial cells which surround the ductal epithelium. Staining of luminal epithelial cells by monoclonal antibodies to cytokeratins was dependent on their location along the ductal system, from intense staining in ducts to variable staining in ductules. The staining of epithelial cells by monoclonals to cytokeratins also varied according to the developmental status of the goat, being maximal in virgin and involuting glands, lowest at lactation and intermediate during gestation. In addition, cuboidal cells, situated perpendicular to myoepithelial cells and adjacent to alveolar cells in secretory alveoli, were also stained by cytokeratin monoclonal antibodies and antisera to the receptor protein, erbB-2, in similar fashion to luminal epithelial cells. These results demonstrate that caprine mammary epithelial cell differentiation along the alveolar pathway is associated with the loss of certain types of cytokeratins and that undifferentiated and secretory alveolar epithelial cells are present within lactating goat mammary alveoli.  相似文献   

4.
Summary Myoepithelial cells in the virgin rat mammary gland have been shown to contain vimentin, using a polyclonal antiserum to vimentin purified from hamster fibroblasts. This antiserum has been shown to be specific for vimentin by immunoblotting and ELISA techniques. Similar results were obtained with a monoclonal antibody to vimentin. In the mammary glands of pregnant rats, the staining with vimentin antibodies is much weaker in the myoepithelial cells of the developing alveolar buds than in the main ducts. Similarly, in lactating glands, the staining of myoepithelial cells is much weaker in the secretory alveoli than in lactiferous sinuses. In each case, staining with antivimentin co-localizes with staining with polyclonal antisera to callous keratin (which specifically stain myoepithelial cells in the rat mammary gland).  相似文献   

5.
Recent immunohistochemical studies have shown that basal cells in human prostatic epithelium are not myoepithelial cells. Since in the literature the Dunning tumor, originally described as a rat prostate carcinoma derived from the dorsolateral prostate of a Copenhagen rat, was reported to have myoepithelial cells, a comparative immunohistochemical and ultrastructural study was performed in the H-, HIF- and AT3-lines of the Dunning tumor, the male accessory sex glands (ventral, dorsal, lateral prostate, coagulating gland, bulbourethral gland) and the mammary gland of both Copenhagen and Wistar rats. Mono- and polyclonal antibodies directed against intermediate filament proteins (cytokeratin, desmin, vimentin) and the contractile proteins (alpha-actin, muscle type specific myosin, tropomyosin) were used along with phalloidin decoration of F-actin. As in the human prostate, none of the rat prostate lobes in either strains did contain basal cells expressing cytokeratin along with alpha-actin, myosin and tropomyosin Cells representing fully differentiated myoepithelial cells, however, were present as anticipated in the mammary gland, the bulbourethral gland and the H-tumor line of the Dunning tumor. This finding is difficult to reconcile with the contention of a prostatic origin of the H-Dunning tumor. Further studies are required to classify the epithelial parental tissue in order to define the true origin of the H-Dunning tumor and the tumor lines derived thereof.  相似文献   

6.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11–20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to – and specific for – epithelial cells; vimentin filaments are seen – at this stage of embryogenesis – only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structures provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

7.
Indirect immunofluorescence microscopy has been used to detect cytoskeletal proteins, which allow a distinction between the two cell types present in the mouse blastocyst: i.e. the cells of the inner cell mass (ICM) and the outer trophoblastic cells. Antibodies against three classes of intermediate-sized filaments (cytokeratins, desmin and vimentin), as well as antibodies against actin and tubulin were studied. Antibodies against prekeratin stain the outer trophoblastic cells but not the ICM in agreement with the findings on adult tissues that cytokeratins are a marker for various epithelial cells. Interestingly, vimentin filaments typical of mesenchymal cells as well as of cells growing in culture seem to be absent in both cell types of the blastocyst. Thus, the cytokeratins of the trophoblastic cells seem to be the first intermediate-sized filaments expressed in embryogenesis. Antibodies to tubulin and actin show that microtubules and microfilaments are ubiquitous structures, although microfilaments have a noticeably different organization in the two cell types. In addition, since early embryogenic multipotential cells show close similarities to teratocarcinomic cells, a comparison is made between the cells of the blastocyst, embryonal carcinoma cells (EC cells) and an epithelial endodermal cell line (PYS2 cells) derived from EC cells. EC cells display vimentin filaments whereas PYS2 cells show both vimentin and cytokeratin filaments. The results emphasize the usefulness of antibodies specific for different classes of intermediate filaments in further embryological studies, and suggest that cells of the blastocyst and EC cells differ with respect to vimentin filaments.  相似文献   

8.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11--20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to--and specific for--epithelial cells; vimentin filaments are seen--at this stage of embryogenesis--only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structurees provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

9.
Abstract. Mouse mammary epithelial cell cultures previously described bring about extensive proliferation and a cell population with the appropriate markers for luminal ductal epithelial cells, and also the ability to form normal tissue after implantation into mice. This success may result from a culture environment that resembles certain aspects of the environment in the mammary gland. Mouse mammary epithelial cells, whose proliferation is limited when plated alone, can be stimulated to multiply by contact with lethally irradiated cells of the LA7 rat mammary tumour line. Most of the proliferative stimulus is imparted by direct cell contact between LA7 and mouse mammary cells. Junctions, including adherens junctions, form among all cells in the culture, much as junctions form in the mammary gland. LA7 cells secrete TGFα and bFGF, factors found in the mammary gland, and factors to which mouse mammary cells respond in culture. Mouse mammary cells express keratins 8 and 18, markers for luminal cells of the mammary duct. LA7 cells express keratin 14 and vimentin, markers for myoepithelial cells. These facts, taken together, fit a model of cell replacement in an epithelial tissue and also imitate the relationship between luminal ductal cells and myoepithelial cells in the mammary gland. This method of culturing cells is useful, not only for in vitro – in vivo carcinogenesis studies, but also for the study of mechanisms by which growth signals are imparted from one cell to another.  相似文献   

10.
Summary Recent immunohistochemical studies have shown that basal cells in human prostatic epithelium are not myoepithelial cells. Since in the literature the Dunning tumor, originally described as a rat prostate carcinoma derived from the dorsolateral prostate of a Copenhagen rat, was reported to have myoepithelial cells, a comparative immunohistochemical and ultrastructural study was performed in the H-, HIF- and AT3-lines of the Dunning tumor, the male accessory sex glands (ventral, dorsal, lateral prostate, coagulating gland, bulbourethral gland) and the mammary gland of both Copenhagen and Wistar rats. Mono- and polyclonal antibodies directed against intermediate filament proteins (cytokeratin, desmin, vimentin) and the contractile proteins (-actin, muscle type specific myosin, tropomyosin) were used along with phalloidin decoration of F-actin. As in the human prostate, none of the rat prostate lobes in either strain did contain basal cells expressing cytokeratin along with -actin, myosin and tropomyosin. Cells representing fully differentiated myoepithelial cells, however, were present as anticipated in the mammary gland, the bulbourethral gland and the H-tumor line of the Dunning tumor. This finding is difficult to reconcile with the contention of a prostatic origin of the H-Dunning tumor. Further studies are required to classify the epithelial parental tissue in order to define the true origin of the H-Dunning tumor and the tumor lines derived thereof.  相似文献   

11.
Two monoclonal antibodies, KA 1 and KA 4, raised against human epidermis, were biochemically and immunologically characterized and were shown to react with specific cytokeratin polypeptides. On frozen sections of human mammary gland, these antibodies distinguish between myoepithelial and luminal epithelial cells. We present evidence that in these cells KA 1 antibody recognized cytokeratin 5 and KA 4 antibody cytokeratin 19. In normal mammary tissue, KA 4 antibody invariably reacted with the epithelial cells lining the lumina of acini, ductules, ducts, and sinus. In contrast, KA 1 antibody decorated only the myoepithelial and basal epithelial cells of acini, ducts, and sinus. In ductules, however, KA 1 also stained the luminal cells. All 73 invasive lobular and ductal carcinomas studied reacted with KA 4 antibody; five of these were also positive, apparently in the same tumor cells, with KA 1. The tumor cells of in situ carcinomas were also stained in a homogeneous pattern with KA 4 antibody; KA 1 antibody reacted only with the surrounding myoepithelium. In epithelial hyperplasias, the proliferating cells were decorated by KA 1 and KA 4 antibodies in a heterogeneous pattern. Other antibodies were used for comparison. The results are discussed with respect to epithelial differentiation and pathogenesis and to the application of such antibodies for immunohistodiagnosis of mammary lesions.  相似文献   

12.
To study cell proliferation in different cell types and segments of the mammary gland, we devised a dual staining procedure, combining nuclear labeling by 5-bromo-2'-deoxy-uridine (BrdU) uptake (revealed by a dark-brown precipitate) and an alternative (red or blue) cytoplasmic labeling by antibodies specific for the differentiation proteins of epithelial, myoepithelial, and secretory cell types. The following markers, revealed by APAAP or beta-galactosidase procedure, were selected: alpha-smooth muscle actin for the myoepithelial cells, keratin (detected by AE1 monoclonal) for the luminal epithelial cells, alpha-lactalbumin and beta-casein for the secretory cells. To follow the full process of organogenesis, the study was conducted in mouse mammary glands from virgin, primed, and lactating animals and from glands cultured in vitro under specific hormone stimulation. Cell proliferation was localized mainly in focal areas (end buds), and mostly corresponded to "null" undifferentiated cells. Estrogen and progestin stimulation induced a relative increase of proliferating differentiated cells of either epithelial or myoepithelial type, localized in ducts and alveolar structures. Prolactin stimulation induced proliferation in secretory cells.  相似文献   

13.
The antigenic profile of 13 normal formalin-fixed, paraffin-embedded human main and accessory lacrimal glands, biopsied from patients aged 11 to 78 years, was studied using a panel of 27 polyclonal and monoclonal antibodies. Secretory cells of lacrimal acini reacted with antibodies to S-100 protein and simple epithelium-type cytokeratins CK 7, CK 8, CK 18, and CK 19. Their luminal membranes were labeled with antibodies to carcinoembryonic antigen, epithelial membrane antigen, and epithelial glycoproteins recognized by Ber-EP4. Myoepithelial cells were often immunopositive for S-100 protein, vimentin, glial fibrillary acidic protein (GFAP), and alpha-smooth muscle actin. More rarely, they reacted with antibodies recognizing CK 5, CK 13, and CK 14, which consistently labeled the basal cells of lacrimal ducts. Unlike myoepithelial cells, basal ductal cells were immunopositive for CK 7, CK 8, CK 18, and CK 19. In main excretory ducts, dendritic melanocyte-like cells co-expressing vimentin and S-100 protein intermingled with ductal epithelial cells. The luminal cells of lacrimal ducts basically paralleled secretory cells in their antigenic profile, although they lacked Ber-EP4 and were immunopositive for CK 4. Antibodies to neuron-specific enolase and synaptophysin reacted with nerve fibers among negatively reacting secretory acini. This antigenic profile closely parallels that of salivary glands and provides a basis for studies of lacrimal gland pathology.  相似文献   

14.
Cells of a clonal line (BMGE + HM) selected from bovine mammary gland epithelial cell cultures are described which, after reaching confluence, do not assume typical epithelioid morphology, but form elongated cells with long slender processes extending over the surfaces of other cells. However, cells of this line which display non-epithelioid morphology and are exceptionally rich in actin microfilaments are identified as epithelial cells by their synthesis of cytokeratins and desmosomal plaque proteins, as demonstrated by immunofluorescence and immunoelectron microscopy and by gel electrophoresis of cytoskeletal proteins. The cells do not produce vimentin and desmin filaments. The specific cytokeratin polypeptides of these myoid cells are identical to those present in normal epithelioid BMGE + H cells but are arranged in unusual arrays of meshworks of finely dispersed, non-fasciated filaments and granular structures. Desmosomal plaque proteins, notably desmoplakins, are abundant, but the electron microscopic appearance of the desmosomes is abnormal in that most of them are associated with a second accessory plaque formed at a distance of 0.1-0.15 micron from the normal desmosomal plaque. Both cytokeratin filaments and desmosomal structures are found throughout the whole cytoplasm, including the extended cell processes. The existence of an epithelial cell line with such an unusual morphology demonstrates the importance of non-morphological criteria in identifying epithelium-derived cells. Our findings also indicate that dramatic differences of cell shape and organization of epithelial cells need not necessarily be associated with changes in the expression of specific cytoskeletal proteins. The possible origin of this cell line from myoepithelial cells is discussed.  相似文献   

15.
Epithelia-derived tumors (carcinomas) can be distinguished from mesenchymally derived tumors by the presence of intermediate-sized filaments of the cytokeratin type, which usually coincides with the absence of other types of intermediate-sized filaments such as vimentin filaments. In the course of diagnostic examinations of human tumors, using immunofluorescence microscopy, we have come across a case of an unusual carcinoma (Primary tumor and lymph node metastasis) positively stained not only with cytokeratin antibodies but also with immunoglobulins present in vimentin antisera. Therefore, this tumor, a cloacogenic carcinoma apparently derived from the rectal-anal transitional region, has been examined in greater detail using both immunofluorescence microscopy and immuno-electron microscopy as well as gel electrophoretic analysis of cytoskeletal polypeptides from total tumor tissue and from microdissected nodules enriched in carcinoma cells. The unusual reaction of the carcinoma cells with immunoglobulins present in seven different (rabbit or guinea pig) antisera raised against vimentin, has been found to be diminished after absorption on purified cytokeratin or total epidermal cytoskeletal material, but not after absorption on purified vimentin. Gel electrophoretic analysis of tumor cytoskeletons showed an unusual complex pattern of cytokeratin polypeptides containing relatively large (Mr 68,000 and Mr 58,000) neutral-to-slightly basic cytokeratins, as are typically found in epidermis and other stratified squamous epithelia, as well as several smaller acidic cytokeratins, including a Mr 40,000 polypeptide found in certain nonstratified epithelial such as colon and small intestine. Total tumor also showed the inclusion of some vimentin which, however, was significantly decreased in analysis of excised carcinoma nodules. Examining antibody binding to polypeptides separated by gel electrophoresis and blotted on nitrocellulose paper, we have found that antisera raised against vimentin contained not only vimentin antibodies but also immunoglobulins which specifically bound to the largest cytokeratin component. We conclude that the unusual reaction of immunoglobulins present in vimentin antisera with cytokeratin filament bundles does not represent specific binding to vimentin in these carcinoma cells, but is due to a component obviously widespread in vimentin antisera which binds specifically to a cytokeratin present in this type of tumor but not in most other carcinomas. It is proposed that use is made in diagnostic examinations of vimentin antisera or affinity-purified vimentin antibodies that have been pre-absorbed on cytokeratin protein, in order to eliminate such disturbing reactions.  相似文献   

16.
Abstract. The initial phase of growth of the parenchymal component of the mouse mammary gland is ductal clongation, which is mainly accomplished by proliferating cells in a specialized structure termed end bud. End buds are composed of multiple layers of epithelial cells (so called body cells) which are capped by a single layer of morphologically unique cells termed cap cells.
We sought to examine the interrelationship between cap cells and other epithelial cell subclasses using a variety of antibodies to different keratin proteins and also antibodies to vimentin, actin and collagen IV. An extensive immunohistochemical characterization of the epithelial components of the developing and differentiating mammary gland demonstrated that cap cells were devoid of any immunohistochemically - detectable keratins but were positive for collagen IV. In contrast, the majority of cells in the end bud along with the luminal epithelial and myoepithelial cells were keratin positive. The body cells of the end bud were the only cells which were positive for antibody to keratin 6, a keratin which previously has been reported to be expressed in proliferating mammary epithelial cells. In addition, estrogen receptor was localized only to epithelial cells of ducts, alvcoli and body cells of end buds, but not to cap cells or myoepithelial cells. We interpret these results to suggest that cap cells are not totpotent stem cells but rather cells specialized in paving the way for ductal elongation as well as serving as precursors to myoepithelial cells.  相似文献   

17.
Using antisera to specific proteins, the localization of the rat mammary parenchymal cells (both epithelial and myoepithelial), the basement membrane, and connective tissue components has been studied during the four physiological stages of the adult rat mammary gland, viz. resting, pregnant, lactating, and involuting glands. Antisera to myosin and prekeratin were used to localize myoepithelial cells, antisera to rat milk fat globule membrane for epithelial cells, antisera to laminin and type IV collagen to delineate the basement membrane and antisera to type I collagen and fibronectin as markers for connective tissue. In the resting, virgin mammary gland, myoepithelial cells appear to form a continuous layer around the epithelial cells and are in turn surrounded by a continuous basement membrane. Antiserum to fibronectin does not delineate the basement membrane in the resting gland. The ductal system is surrounded by connective tissue. Only the basal or myoepithelial cells in the terminal end buds of neonatal animals demonstrate cytoplasmic staining for basement membrane proteins, indicating active synthesis of these proteins during this period. In the secretory alveoli of the lactating rat, the myoepithelial cells no longer appear to form a continuous layer beneath the epithelial cells and in many areas the epithelial cells appear to be in contact with the basement membrane. The basement membrane in the lactating gland is still continuous around the ducts and alveoli. In the lactating gland, fibronectin appears to be located in the basement membrane region in addition to being a component of the stroma. During involution, the alveoli collapse, and appear to be in a state of dissolution. The basement membrane is thicker and is occasionally incomplete, as also are the basket-like myoepithelial structures. Basement membrane components can also be demonstrated throughout the collapsed alveoli.  相似文献   

18.
《The Journal of cell biology》1984,98(3):1072-1081
Desmosomal proteins are co-expressed with intermediate-sized filaments (IF) of the cytokeratin type in epithelial cells, and these IF are firmly attached to the desmosomal plaque. In meningiomal and certain arachnoidal cells, however, vimentin IF are attached to desmosomal plaques. Meningiomas obtained after surgery, arachnoid "membranes", and arachnoid granulations at autopsy, as well as meningiomal cells grown in short-term culture have been examined by single and double immunofluorescence and immunoelectron microscopy using antibodies to desmoplakins, vimentin, cytokeratins, glial filament protein, neurofilament protein, and procollagen. In addition, two-dimensional gel electrophoresis of the cytoskeletal proteins has been performed. Using all of these techniques, vimentin was the only IF protein that was detected in significant amounts. The junctions morphologically resembling desmosomes of epithelial cells have been identified as true desmosomes by antibodies specific for desmoplakins and they provided the membrane attachment sites for the vimentin IF. These findings show that anchorage of IF to the cell surface at desmosomal plaques is not restricted to cytokeratin IF as in epithelial cells and desmin IF as in cardiac myocytes, suggesting that binding to desmosomes and hemidesmosomes is a more common feature of IF organization. The co- expression of desmosomal proteins and IF of the vimentin type only defines a new class of cell ("desmofibrocyte") and may also provide an important histodiagnostic criterion.  相似文献   

19.
Myoepithelial cells present in exocrine glands cause secretion from the glands by contraction. They have mixed characteristics with regard to cytoskeletal elements, containing both epithelial-type intermediate filaments and smooth muscle-type myofilaments. For further characterization, myoepithelial cells from bovine apocrine sweat glands and tracheal glands were here examined with special attention to the cell-substratum adhesion system. Immunofluorescence microscopy using a panel of antibodies against adherens-type junctional and hemidesmosomal proteins demonstrated two types of cell-substratum junctions in myoepithelial cells from both glands. Type-I hemidesmosomes (HDs) consisting of plectin, BP230, integrin alpha6beta4, and BP180 were thus observed as punctate arrays longitudinally arranged along myoepithelial cell surfaces, while adherens-type junctions were similarly evident as linear rib-like structures. Double-label immunofluoresence revealed the two junctions to be distributed in a mutually exclusive or independent manner. Electron microscopy further demonstrated that apocrine myoepithelial cells surround secretory epithelial cells completely, without any gaps, HDs being abundant along the basement membrane, but with no distinct structures in the inter-hemidesmosomal regions. Immunoelectron microscopy, however, revealed an interhemidesmosomal localization of vinculin, pointing to the existence of adherens-type junctions. Secretory epithelial cells in tracheal glands were found not to be completely covered with myoepithelial cells, so that more than half of them are directly attached to the basement membrane, where they form type II-HDs lacking BP230 and BP180, but no detectable adherens junctions, like epidermal basal cells and sebaceous gland cells. These observations demonstrate that, in addition to their cytoskeleton, myoepithelial cells have both epithelial- and smooth muscle-type cell-substratum adhesion structures, i.e. HDs and dense plaque-like adherens junctions.  相似文献   

20.
Intermediate-sized filaments of human endothelial cells.   总被引:15,自引:0,他引:15       下载免费PDF全文
Human endothelial cells prepared from unbilical cords are characterized in parallel by electron microscopy and indirect immunofluorescence microscopy using specific antibodies against different classes of intermediate-sized filaments. The strongly developed, loose bundles of intermediate-sized filaments typically found in these cells are not decorated by antibodies against prekeratin or antibodies against smooth muscle desmin. They are, however, strongly decorated by antibodies directed against murine "vimentin," i.e., the 57,000 mol wt polypeptide which is the major protein of the intermediate-sized filaments predominant in various cells of mesenchymal origin. Cytoskeletal preparations greatly enriched in intermediate-sized filaments show the enrichment of a polypeptide band comigrating with murine vimentin. This shows that the intermediate-sized filaments that are abundant in human endothelial cells are predominantly of the vimentin type and can be demonstrated by their cross-reaction with the vimentin of rodents. These data also strengthen the evidence for several subclasses of intermediate-sized filaments, which can be distinguished by immunological procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号