首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
细菌内毒素的研究现状   总被引:1,自引:0,他引:1  
本文综述了有关细菌内毒素的研究成果,包括内毒素化学、细胞识别内毒素机制、细胞因子在败血症休克中的作用、脂多糖(LPS)的病理生理效应、LPS耐受性与超敏反应,LPS的内在化和分解代谢、内毒素抗体和免疫治疗。  相似文献   

2.
革兰阴性菌的脂多糖(lipopolysaccharide,LPS)是引起内毒素休克的重要触发剂.近年来的研究发现,在内毒素血症的发生、发展过程中,内毒素结合蛋白(endotoxin binding protein,EBP)及其受体系统是机体识别和调控内毒素作用的关键机制,内毒素的许多生物学效应可能就是通过其增敏或抑制作用而实现的.本文就内毒素结合蛋白与LPS作用关系的研究进展作一综述.  相似文献   

3.
内毒素休克防治的研究进展   总被引:7,自引:0,他引:7  
本文讨论了防治内毒素休克的新途径:抗内毒素疗法的抗核心多糖和类脂A的多克隆抗体及单克隆抗体的应用;抗细胞因子疗法对内毒素休克病人防御功能的调控作用;适当剂量粒细胞集刺激因子可增加循环的粒细胞数,加速粒细胞血管外迁移,促进内毒素消除;一氧化氮对败血症休克的利弊均存,只有针对诱导型合成酶或特定血管的一氧化氮合成酶抑制剂才对内毒素休克治疗更具重要意义。  相似文献   

4.
目的:研究脊髓缺血损伤合并脓毒血症后大鼠脊髓的病理改变及脊髓组织中锌转运体1(zinc transporter1,ZnT1)的表达规律。方法:将32只wistar大鼠随机分为假手术组(s组,n=8)、腹主动脉阻断组(I/R组,n=8)、内毒素组(LPS组,n=8)和腹主动脉阻断+内毒素组(I/R+LPS组,n=8)。用HE染色的方法检测脊髓组织病理损害,用免疫组织化学的方法检测脊髓组织中ZnTl的表达规律。结果:1.病理结果改变:除S组外,I/R组、LPS组、UR+LPS组三组大鼠HE染色切片中均可见脊髓组织损伤,各组脊髓损伤的严重程度有以下规律:S组〈I/R组〈LPS组〈I/R+LPS组。2.免疫组化结果:脊髓损伤组ZnT1的表达较假手术组均增加(P〈0.05)。结论:1.脊髓缺血损伤合并内毒素攻击可导致严重的脊髓损伤。2.腹主动脉阻断合并内毒素攻击所致脊髓损伤早期脊髓组织中ZnT1表达上调,可能通过调节脊髓损伤早期脊髓组织中锌稳态平衡进而在脊髓损伤后脊髓神经元的病理生理活动中发挥重要作用,这一实验结果可为寻找早期脊髓损伤预防措施提供新的思路。  相似文献   

5.
诱导型一氧化氮合酶对内毒素休克小肠微循环的影响   总被引:3,自引:0,他引:3  
Shi EY  Jiang XJ  Bai H  Gu TX  Yoshiki N 《生理学报》2005,57(1):39-44
采用静脉注射脂多糖(1ipopolysaccharide,LPS)的方法建立小鼠内毒素休克模型,探讨内毒素休克时小肠微循环的变化以及诱导型一氧化氮合酶(iNOS)对小肠微循环的影响。实验过程中连续监测小鼠平均动脉血压(mean afterial pressure,MAP)变化情况。利用FTTC标记红细胞和活体显微镜方法直接观察并计算小鼠小肠绒毛尖端小动脉和毛细血管内红细胞的流速和流量,并观察敲除小鼠iNOS基因和选择性iNOS抑制剂S-methylthiourea sulfate(SMT)对实验过程中小肠微循环的影响。结果显示,对于野生型小鼠,应用SMT处理和敲除iNOS基因对基线的MAP、小肠绒毛尖端小动脉和毛细血管的红细胞流速和流量没有显著性差别。给予LPS后,小鼠的MAP进行性下降。给予LPS前,应用SMT和敲除小鼠iNOS基因可以显著提高MAP:给予LPS后,小鼠小肠绒毛尖端小动脉和毛细血管内红细胞流速和流量显著下降。给予LPS前,应用SMT和敲除小鼠iNOS基因可以显著提高小肠绒毛尖端小动脉和毛细血管的红细胞流速和流量。结果表明,iNOS在内毒素休克小肠微循环衰竭的过程中发挥重要作用。一能性  相似文献   

6.
以往的研究认为,TLR4是内毒素(LPS)的胞膜受体.新近的研究发现含半胱氨酸的天冬氨酸蛋白水解酶11(Caspase-11,Casp11)可能在胞内LPS的识别中发挥关键作用.Caspase-11与胞内LPS结合后被激活.活化的Casp-11一方面剪切下游gasdermin D分子进而介导细胞焦亡(pyroptosis),另一方面激活NLRP3/ASC-Casp-1通路,使细胞分泌促炎因子IL-1β和IL-18等.Casp-11还能通过促进吞噬体和溶酶体融合,增强细胞对革兰氏阴性菌的杀灭.在严重内毒素血症过程中,由于Casp-11过度活化,大量细胞发生焦亡,致使大量胞内促炎介质被释放到胞外,导致机体出现难以调控的炎症反应,最终发展成内毒素休克.Casp-11是内毒素休克发生的关键分子.本文对Casp-11在LPS的识别、活化及效应方面的最新进展进行综述.  相似文献   

7.
内毒素耐受机制的研究进展   总被引:5,自引:0,他引:5  
Luo FL  Wan JY  Zhou QX 《生理科学进展》2006,37(4):319-324
内毒素耐受(endotoxin tolerance)早在50多年前就已经引起人们的关注,但其具体的分子机制至今尚不清楚。Toll样受体4(Toll-1ike receptor-4,TLR4)作为脂多糖(LPS)的主要受体,参与LPS信号的跨膜转导,与LPS耐受密切相关。在内毒素耐受过程中,TLR4转导通路中的信号蛋白及下游转录因子在数量、结构和功能上发生改变,可引起炎性因子释放减少、抗炎因子产生增加,并导致特定信号通路(如P13K通路)和负性调节因子(如SHIP1、SOCS、FLN29等)的激活。除此之外,TLR2通路、Gi蛋白、蛋白激酶C(protein kinase C,PKC)以及一些信号分子的剪接异构体等也参与了内毒素耐受现象的发生。总之,内毒素耐受是一个由多种原因引起的、多种生物物质参与的复杂病理生理过程,是机体抵抗G-细菌感染的重要保护机制。因此,探索内毒素耐受的机制,寻求机体内源性的抗炎机制将为败血症等一些致死性感染性疾病的治疗提供新的思路和理论依据。  相似文献   

8.
目的对从噬菌体展示随机肽库筛选获得的内毒素结合肽模拟肽进行体外拈抗内毒素活性鉴定。方法采用FMOC固相合成法化学合成内毒素结合肽模拟肽P11,并进行拮抗内毒素活性和细胞毒性测定。结果亲和ELISA检测显示P11与LPS有较高的亲和力,通过生长曲线和流式细胞学分析细胞周期显示P11对人U937细胞生长无明显影响。流式细胞检测显示P11呈剂量依赖性抑制FITC—LPS与人外周血单核细胞(PBMC)结合。细胞因子生成抑制实验显示10μg/mlP11可显著抑制LPS诱导PBMC和U937细胞TNF—αmRNA转录和蛋白表达。结论体外活性鉴定结果表明化学合成的模拟肽P11可抑制LPS诱导的炎性反应。  相似文献   

9.
本工作在戊巴比妥钠麻醉的家兔上进行。采用夹闭肠系膜上动脉阻断血流方法建立内毒紫休克的实验模型。用放射免疫分析法测定了休克前后脑区、脑脊液及血浆中脑啡肽含量的变化,并观察了脑室或静脉注射纳洛酮的抗休克效应。结果如下:1.休克时,下丘脑、延脑、桥脑的亮脑啡肽含量显著升高,中脑无明显变化、丘脑、纹状体下降。脑脊液和血浆中亮脑啡肽明显增加。外周静脉血与肾静脉血中无显著差别。2.侧脑室或静脉注射纳洛酮,均可使休克动物的血压回升,延长存活时间。脑室注射的升压数值略大,维持升压时间也较长。实验结果提示:脑啡肽参与内毒素休克过程。断阿片样物质的作用,可能是治疗内毒素休克的一个途径。  相似文献   

10.
细菌内毒素的研究现状   总被引:3,自引:0,他引:3  
本文介绍了细胞识别内毒素的机制,毒血症休克中的细胞因子,内毒素的生理病理作用,对内毒素的超敏和耐受及抗内毒素抗体和免疫治疗。  相似文献   

11.
There is now evidence that major depression (MDD) is accompanied by an activation of the inflammatory response system (IRS) and that pro-inflammatory cytokines and lipopolysacharide (LPS) may induce depressive symptoms. The aim of the present study was to examine whether an increased gastrointestinal permeability with an increased translocation of LPS from gram negative bacteria may play a role in the pathophysiology of MDD. Toward this end, the present study examines the serum concentrations of IgM and IgA against LPS of the gram-negative enterobacteria, Hafnia Alvei, Pseudomonas Aeruginosa, Morganella Morganii, Pseudomonas Putida, Citrobacter Koseri, and Klebsielle Pneumoniae in MDD patients and normal controls. We found that the prevalences and median values for serum IgM and IgA against LPS of enterobacteria are significantly greater in patients with MDD than in normal volunteers. These differences are significant to the extent that a significant diagnostic performance is obtained, i.e. the area under the ROC curve is 90.1%. The symptom profiles of increased IgM and IgA levels are fatigue, autonomic and gastro-intestinal symptoms and a subjective feeling of infection. The results show that intestinal mucosal dysfunction characterized by an increased translocation of gram-negative bacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. It is suggested that the increased LPS translocation may mount an immune response and thus IRS activation in some patients with MDD and may induce specific "sickness behaviour" symptoms. It is suggested that patients with MDD should be checked for leaky gut by means of the IgM and IgA panel used in the present study and accordingly should be treated for leaky gut.  相似文献   

12.
Lipopolysaccharide (LPS) plays a critical role in the pathogenesis of sepsis caused by gram‐negative bacterial infections. Therefore, LPS‐neutralizing molecules would have important clinical applications. Chensinin‐1, a novel antimicrobial peptide with atypical structural features, was found in the skin secretions of the Chinese brown frog Rana chensinensis. To understand the role of LPS in the bacterial susceptibility to chensinin‐1 and to investigate its anti‐endotoxin effects, the interactions of chensinin‐1 with LPS were investigated in this study using circular dichroism, in situ IR, isothermal titration calorimetry, and zeta potential. This study is the first to use in situ IR spectroscopy to evaluate the secondary structural changes of this peptide. The capacity of chensinin‐1 to block the LPS‐dependent cytokine secretion of macrophages was also investigated. Our results show that chensinin‐1 can form α‐helical structures in LPS suspensions. LPS can affect the antimicrobial activity of chensinin‐1, and chensinin‐1 was able to mitigate the effects of LPS. These data may facilitate the development of antimicrobial peptides with potent antimicrobial and anti‐endotoxin activities. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 719–726, 2015.  相似文献   

13.
14.
The function of microRNAs (miRNAs) during alcoholic liver disease (ALD) has recently become of great interest in biological research. Studies have shown that ALD associated miRNAs play a crucial role in the regulation of liver‐inflammatory agents such as tumour necrosis factor‐alpha (TNF‐α), one of the key inflammatory agents responsible for liver fibrosis (liver scarring) and the critical contributor of alcoholic liver disease. Lipopolysaccharide (LPS), a component of the cell wall of gram‐negative bacteria, is responsible for TNF‐α release by Kupffer cells. miRNAs are the critical mediators of LPS signalling in Kupffer cells, hepatocytes and hepatic stellate cells. Certain miRNAs, in particular miR‐155 and miR‐21, show a positive correlation in up‐regulation of LPS signalling when they are exposed to ethanol. ALD is related to enhanced gut permeability that allows the levels of LPS to increase, leads to increased secretion of TNF‐α by the Kupffer cells and subsequently promotes alcoholic liver injury through specific miRNAs. Meanwhile, two of the most frequently dysregulated miRNAs in steatohepatitis, miR‐122 and miR‐34a are the critical mediators in ethanol/LPS activated survival signalling during ALD. In this review, we summarize recent findings regarding the experimental and clinical aspects of functions of specific microRNAs, focusing mainly on inflammation and cell survival after ethanol/LPS treatment, and advances on the role of circulating miRNAs in human alcoholic disorders.  相似文献   

15.
16.
Sepsis and ischemia-reperfusion (I/R) injury are among the leading causes of death in critically ill patients at the surgical intensive care unit setting. Both conditions are marked by the excessive inflammatory response which leads to a lethal disease complex such as acute lung injury, systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Despite the advances in the understanding of the pathophysiology of those conditions, very little progress has been made toward therapeutic interventions. One of the key aspects of these conditions is the accumulation of apoptotic cells that have the potential to release toxic and proinflammatory contents due to secondary necrosis without appropriate clearance by phagocytes. Along with the prevention of apoptosis, that is reported to be beneficial in sepsis and I/R injury, thwarting the development of secondary necrosis through the active removal of apoptotic cells via phagocytosis may offer a novel therapy. Milk fat globule-EGF factor VIII (MFG-E8), which is mainly produced by macrophages and dendritic cells, is an opsonin for apoptotic cells and acts as a bridging protein between apoptotic cells and phagocytes. Recently, we have shown that MFG-E8 expression is decreased in experimental sepsis and I/R injury models. Exogenous administration of MFG-E8 attenuated the inflammatory response as well as tissue injury and mortality through the promotion of phagocytosis of apoptotic cells. In this review, we describe novel information available about the involvement of MFG-E8 in the pathophysiology of sepsis and I/R injury, and the therapeutic potential of exogenous MFG-E8 treatment for those conditions.  相似文献   

17.
Lipopolysaccharide (LPS) from gram negative bacteria plays an important role in the pathophysiology of neurodegenerative diseases. Many evidences showed that LPS-induced neuroinflammation is related to upregulation of NF-kappaB. Here, we report that long-term treatment of lower dosage LPS mainly causes upregulation of Id2 protein. As an inhibitor of cell differentiation, Id2 plays an import role in adult olfactory neurogenesis. However, Id2 protein in brain acts as two edges in a sword, persist over-expression of Id2 in brain can induce neurodamages and may be related to neurodegeneration.  相似文献   

18.
Endotoxin (lipopolysaccharide (LPS)), a component of Gram-negative bacteria, is among the most potent proinflammatory substances known. The lipid-A region of this molecule initiates the production of multiple host-derived inflammatory mediators, including cytokines (e.g. tumor necrosis factor-alpha (TNFalpha)). It has been a continuous effort to identify methods of interfering with the interaction between enteric LPS and inflammatory cells using natural and synthetic LPS analogs. Some of these LPS analogs (e.g. Rhodobacter spheroides LPS/lipid-A derivatives) are antagonists in human cells but act as potent agonists with cells of other species. Data reported here indicate that structurally novel LPS from symbiotic, nitrogen-fixing bacteria found in association with the root nodules of legumes do not stimulate human monocytes to produce TNFalpha. Furthermore, LPS from one of these symbiotic bacterial species, Rhizobium sp. Sin-1, significantly inhibits the synthesis of TNFalpha by human cells incubated with Escherichia coli LPS. Rhizobium Sin-1 LPS exerts these effects by competing with E. coli LPS for binding to LPS-binding protein and by directly competing with E. coli LPS for binding to human monocytes. Rhizobial lipid-A differs significantly from previously characterized lipid-A analogs in phosphate content, fatty acid acylation patterns, and carbohydrate backbone. These structural differences define the rhizobial lipid-A compounds as a potentially novel class of LPS antagonists that might well serve as therapeutic agents for the treatment of Gram-negative sepsis.  相似文献   

19.
Up to date, the nature of the sepsis‐induced vascular leakage is understood only partially, which limits pharmacological approaches for its management. Here we studied the protective effect of cAMP using endotoxin‐induced hyperpermeability as a model for barrier dysfunction observed in gram‐negative sepsis. We demonstrated that the alleviation of lipopolysaccharide (LPS)‐induced barrier compromise could be achieved by the specific activation of either protein kinase A (PKA) or Epac with cAMP analogs Bnz‐cAMP or O‐Me‐cAMP, respectively. We next studied the involvement of PKA substrates VASP and filamin1 in barrier maintenance and LPS‐induced barrier compromise. Depletion of both VASP and filamin1 with the specific siRNAs significantly exacerbated both the quiescent cells barrier and LPS‐induced barrier dysfunction, suggesting barrier‐protective role of these proteins. VASP depletion was associated with the more severe loss of ZO‐1 peripheral staining in response to LPS, whereas filamin1‐depleted cells reacted to LPS with more robust stress fiber induction and more profound changes in ZO‐1 and VE‐cadherin peripheral organization. Both VASP and filamin1 phosphorylation was significantly increased as a result of PKA activation. We next analyzed the effect of VASP and filamin1 depletion on the PKA‐dependent alleviation of LPS‐induced barrier compromise. We observed that Bnz‐cAMP ability to counteract LPS‐induced hyperpermeability was attenuated only by VASP, but not filamin1 depletion. Our data indicate that while PKA‐dependent VASP phosphorylation contributes to the protective effect of cAMP elicited on LPS‐compromised monolayers, filamin1 phosphorylation is unlikely to play a significant role in this process. J. Cell. Physiol. 221: 750–759, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The Gram‐negative bacterial endotoxin lipopolysaccharide (LPS) is a potent inflammatory mediator and a leading cause of bacterial sepsis. While LPS is known to activate antigen‐presenting cells, here we find that LPS down‐regulates expression of CD11c and CD11b on splenic dendritic cell subsets, thus confounding the ability to identify these subsets following treatment. This has implications with regard to tracking the response to LPS in terms of the cell subsets involved, and should be considered whenever such studies are undertaken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号