首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
硅藻重金属污染生态学研究进展   总被引:3,自引:0,他引:3  
硅藻是水生生态系统健康的指示生物之一,对环境变化极为敏感,某些典型硅藻已应用于指示水体重金属污染.本文围绕地表水重金属污染,从毒性效应、生物吸附和累积、生态适应机制及生物指示与生态修复作用等方面,综述了硅藻重金属污染生态学研究进展,阐述重金属污染下硅藻的生长趋势和硅壳形态的变化,硅藻对重金属生物吸附和生物累积的差别,硅藻对重金属的表面络合和离子交换等生态适应机制,以及硅藻对水体重金属污染的指示作用和生态修复作用,为水生生态系统的重金属污染防治与预警技术提供科学依据.  相似文献   

2.
治理重金属污染河流底泥的生物淋滤技术   总被引:5,自引:0,他引:5  
治理重金属污染河流底泥的生物技术是指利用生物体来消除或降低重金属毒性的方法,包括微生物修复、植物修复和植物.微生物联合修复,具有成本低、去除效率高、脱毒后污泥脱水性能好等优点,近年来在国际上备受关注.本文介绍了近10年来生物技术在治理重金属污染河流底泥方面的研究成果,着重介绍了日益受关注的生物淋滤技术,从微生物学、分子生物学和生物表面活性剂等方面的发展作了详细描述,展望了生物修复在河流底泥重金属污染应用中的前景.  相似文献   

3.
随着人类活动的增加,对有机物和重金属的应用越来越广泛,同时造成的环境污染程度越来越严重.综述了石油、农药、表面活性剂及重金属类污染物治理中基因工程菌的构建及应用的研究进展,指出利用基因工程菌解决环境中的石油、农药、表面活性剂及重金属的污染问题已成为环境污染修复领域的研究热点,并提出基因工程菌的构建及应用过程中的难点及发展趋势.  相似文献   

4.
污染土壤淋洗修复技术研究进展   总被引:22,自引:0,他引:22  
土壤淋洗修复技术是一种行之有效的污染土壤治理技术,适合于快速修复受高浓度重金属和有机物污染土壤与沉积物。本文综述了土壤淋洗修复技术的特点、技术流程、土壤淋洗剂的研究与应用进展,指出异位土壤淋洗修复技术因修复效果稳定,易于实现系统控制和废弃物减量化等优点而具有更广阔的应用前景,天然螯合剂和生物表面活性剂等环境友好型淋洗剂正逐渐取代人工螯合剂和化学表面活性剂成为土壤淋洗剂研究的主流方向,而现代超分子化学的引入和发展有可能对复合污染土壤的高效淋洗修复研究产生新的影响。  相似文献   

5.
随着工业化进程不断加快,重金属污染日益加剧,尤其是水体的重金属污染,已严重威胁人类健康,迫切需要进行有效的污染修复。相比传统物理和化学修复,生物修复具有绿色环保和可持续性的特点。因为微生物生长繁殖迅速、生物被膜具有动态可调节和环境适应性好等特点,使其能更好耐受胁迫环境,在环境修复中有重要作用。合成生物学改造微生物及生物被膜用于环境污染生物修复近年兴起,成为未来重要的发展方向。主要概述了重金属污染的微生物修复机理和方法,结合可编程微生物被膜的最新研究成果,重点介绍了合成生物学改造微生物及生物被膜的分类与功能应用,以及在重金属铅、汞和镉等污染修复中的研究进展,讨论了重金属污染生物修复的发展方向。  相似文献   

6.
赤泥在重金属污染治理中的应用研究进展   总被引:2,自引:0,他引:2  
尽管赤泥在重金属污染环境修复研究中的应用越来越受到重视,但赤泥给污染环境修复带来突破的同时也给环境带来风险.目前,在赤泥的重金属环境修复研究中,针对赤泥的修复效果和修复过程研究较多,而对赤泥的钝化机理研究不够深入,赤泥修复的环境安全风险评价才刚起步.本文对近年来国内外关于赤泥修复重金属污染的研究进行综述,并指出了赤泥在今后的重金属污染治理中应加强的方向:一是深入赤泥对重金属钝化机制的研究;二是探索有效的赤泥安全评价方法;三是联合赤泥修复和生物修复技术(植物和微生物)对重金属和有机物复合污染进行修复.  相似文献   

7.
根际促生菌强化植物修复重金属污染土壤的研究进展   总被引:2,自引:0,他引:2  
植物修复虽然是近年来土壤重金属污染修复的重要手段之一,但因修复植物生长缓慢、生物量小、重金属转移率低等因素严重影限制了植物修复技术的广泛应用。根际促生菌(plant growth promoting rhizobacteria,PGPR)作为一类生长在植物根际土壤中的微生物,不仅能够利用自身的抗性系统减缓重金属离子对植物的毒性,还能够改变重金属的形态和迁移率,并通过分泌铁载体、有机酸、生物表面活性剂、植物激素等作用,直接或者间接地促进植物生长和增强植物对重金属的抗性,在强化植物修复土壤重金属污染过程中发挥着重要的作用。现介绍了根际促生菌的种类及其重金属抗性机制,总结了近年来国内外关于根际促生菌促进植物生长、强化植物修复重金属污染土壤的作用原理,同时对该研究领域目前存在的问题以及今后的研究前景进行展望,以期为今后土壤重金属修复研究提供新的思路和理论依据。  相似文献   

8.
白腐菌的研究进展及其在重金属修复中的展望   总被引:3,自引:0,他引:3  
白腐菌是一类特殊的丝状真菌,能降解多种污染物质,具有广谱、彻底、高效、无专一性的 特点,在生物修复中有广阔的应用前景。综述了白腐菌的分类、酶系、降解机理以及应用于有机 物污染的研究现状,特别介绍了白腐菌在重金属污染的生物修复的应用进展情况,包括白腐菌吸 附重金属的原理、在重金属污染的废水中的研究应用现状及在修复重金属污染土壤中需考虑的 因素。同时展望了白腐菌在重金属污染及复合污染的生物修复中的应用前景。  相似文献   

9.
重金属的生物不可降解性使其在环境中长期存在,导致严重的环境污染,对人类健康和生态系统构成威胁。与传统的物化修复技术相比,微生物修复具有成本低廉、环境友好和高效等特点。在面对重金属胁迫或营养不均衡时,微生物会被激发以分泌合成胞外多糖(exopolysaccharides, EPS)。由此可见,EPS的产生是微生物对抗重金属胁迫的重要策略之一。EPS不仅能保护微生物在低温、高温、高盐等极端环境或受毒性化合物胁迫的条件下存活,并且在细胞内外进行信息和物质的交流与传递,既作为保护屏障限制重金属离子进入细胞,又作为介质进行交流。EPS结构中含有多个带负电荷的官能团,能够与重金属离子发生络合、离子交换、氧化还原等反应,从而降低重金属的生物有效性并减轻其毒性。微生物EPS在重金属胁迫环境中的修复具有重要意义。然而,目前缺乏关于微生物EPS合成过程、与重金属互作机制及其在重金属胁迫环境中应用现状的系统综述。本文概述了微生物EPS及其分类,详细阐述了细菌EPS胞内及胞外的生物合成机制,并探讨了微生物EPS与重金属互作机制,以及微生物EPS修复水、土环境中重金属污染方面的研究进展。最后,展望了EPS合成及其在重金属修复中的作用机制研究,可为微生物EPS进一步应用于环境重金属污染修复提供支持。  相似文献   

10.
重金属污染是全球面临的亟待解决的生态问题。利用植物对重金属的富集作用来清除环境重金属污染即植物修复已成为重要的环境生物技术之一。这一技术的长远发展有赖于在重金属富集或耐受中起关键作用的基因的克隆和应用。植物络合素是植物体内一类重要的对重金属起螯合作用的多肽, 其合成受植物络合素合酶的催化。该文取得了如下研究结果:1)通过原子吸收测定表明,在大蒜(Allium sativum)的根部可以积累3 000 mg·kg-1的重金属镉;2)将克隆的大蒜植物络合素合酶基因(AsPCS)置于酵母表达启动子之下,构建酵母表达载体,并将其分别转入了因CUP1和acr3基因缺失而对重金属镉和砷敏感的酵母突变体菌株后,发现来自大蒜的AsPCS基因的表达使酵母CUP1缺失菌株对镉的耐受性提高了4倍, acr3缺失菌株对砷的耐受性提高了两倍;3)表达AsPCS基因酵母的生长模式证实了AsPCS基因的表达是酵母对重金属耐受性提高的原因。这些结果暗示, 大蒜植物络合素合酶基因在大蒜对重金属的抗性及大蒜根部对镉的积累中起关键作用,可作为重要的基因元件应用到修复污染的植物基因工程中。  相似文献   

11.
Heavy metals contaminate numerous freshwater streams and rivers worldwide. Previous work by this group demonstrated a relationship between the structure of hyporheic microbial communities and the fluvial deposition of heavy metals along a contamination gradient during the fall season. Seasonal variation has been documented in microbial communities in numerous terrestrial and aquatic environments, including the hyporheic zone. The current study was designed to assess whether relationships between hyporheic microbial community structure and heavy-metal contamination vary seasonally by monitoring community structure along a heavy-metal contamination gradient for more than a year. No relationship between total bacterial abundance and heavy metals was observed (R(2) = 0.02, P = 0.83). However, denaturing gradient gel electrophoresis pattern analysis indicated a strong and consistent linear relationship between the difference in microbial community composition (populations present) and the difference in the heavy metal content of hyporheic sediments throughout the year (R(2) = 0.58, P < 0.001). Correlations between heavy-metal contamination and the abundance of four specific phylogenetic groups (most closely related to the alpha, beta, and gamma-proteobacteria and cyanobacteria) were apparent only during the fall and early winter, when the majority of organic matter is deposited into regional streams. These seasonal data suggest that the abundance of susceptible populations responds to heavy metals primarily during seasons when the potential for growth is highest.  相似文献   

12.
Phytochelatin-related peptides were analyzed in chickpea plants exposed to six different heavy-metal ions. Cadmium and arsenic stimulated phytochelatin and homophytochelatin synthesis in roots but other metals did not. These metals, however, caused an overall increase in the precursors, glutathione, homoglutathione and cysteine. These changes may be different biochemical indexes for heavy-metal contamination.  相似文献   

13.
Abundance and diversity of Archaea in heavy-metal-contaminated soils.   总被引:5,自引:0,他引:5  
The impact of heavy-metal contamination on archaean communities was studied in soils amended with sewage sludge contaminated with heavy metals to varying extents. Fluorescent in situ hybridization showed a decrease in the percentage of Archaea from 1.3% +/- 0.3% of 4', 6-diamidino-2-phenylindole-stained cells in untreated soil to below the detection limit in soils amended with heavy metals. A comparison of the archaean communities of the different plots by denaturing gradient gel electrophoresis revealed differences in the structure of the archaean communities in soils with increasing heavy-metal contamination. Analysis of cloned 16S ribosomal DNA showed close similarities to a unique and globally distributed lineage of the kingdom Crenarchaeota that is phylogenetically distinct from currently characterized crenarchaeotal species.  相似文献   

14.
Heavy metals contaminate numerous freshwater streams and rivers worldwide. Previous work by this group demonstrated a relationship between the structure of hyporheic microbial communities and the fluvial deposition of heavy metals along a contamination gradient during the fall season. Seasonal variation has been documented in microbial communities in numerous terrestrial and aquatic environments, including the hyporheic zone. The current study was designed to assess whether relationships between hyporheic microbial community structure and heavy-metal contamination vary seasonally by monitoring community structure along a heavy-metal contamination gradient for more than a year. No relationship between total bacterial abundance and heavy metals was observed (R2 = 0.02, P = 0.83). However, denaturing gradient gel electrophoresis pattern analysis indicated a strong and consistent linear relationship between the difference in microbial community composition (populations present) and the difference in the heavy metal content of hyporheic sediments throughout the year (R2 = 0.58, P < 0.001). Correlations between heavy-metal contamination and the abundance of four specific phylogenetic groups (most closely related to the α, β, and γ-proteobacteria and cyanobacteria) were apparent only during the fall and early winter, when the majority of organic matter is deposited into regional streams. These seasonal data suggest that the abundance of susceptible populations responds to heavy metals primarily during seasons when the potential for growth is highest.  相似文献   

15.
Abstract

To study the contamination of heavy metals in the aquaculture area of Beibu Gulf, the concentrations of seven metals in seawater were investigated. The results showed that significant seasonal and spatial distributions of heavy metals were observed in the four aquaculture areas. Generally, the heavy-metal concentrations in the Maowei Sea were higher than the other three aquaculture areas, which may be related to local industrialization and urbanization development. The concentrations of some metals were obviously higher in wet seasons than in dry seasons, which may be attributed to the seasonal river discharge, rainfall and seawater intrusion. Compared to other regions, some metal levels revealed relatively high contamination. Remarkably, the concentrations of Hg, Cu and Cd were much higher than concentrations found in the past 20?years in the seawater of the Guangxi Beibu Gulf, suggesting that there were increasing anthropogenic inputs of those metals in the aquaculture areas. The assessment of ecological risk index (ERI) indicated that the highest ERI value was found in the Maowei Sea, followed by Pearl Bay, Lianzhou Bay and Hongsha. Hg is the main ecological risk factor, and the heavy-metal contamination in the aquaculture areas must not be ignored.  相似文献   

16.
The impact of heavy-metal contamination on archaean communities was studied in soils amended with sewage sludge contaminated with heavy metals to varying extents. Fluorescent in situ hybridization showed a decrease in the percentage of Archaea from 1.3% ± 0.3% of 4′,6-diamidino-2-phenylindole-stained cells in untreated soil to below the detection limit in soils amended with heavy metals. A comparison of the archaean communities of the different plots by denaturing gradient gel electrophoresis revealed differences in the structure of the archaean communities in soils with increasing heavy-metal contamination. Analysis of cloned 16S ribosomal DNA showed close similarities to a unique and globally distributed lineage of the kingdom Crenarchaeota that is phylogenetically distinct from currently characterized crenarchaeotal species.  相似文献   

17.
Prior field studies by our group have demonstrated a relationship between fluvial deposition of heavy metals and hyporheic-zone microbial community structure. Here, we determined the rates of change in hyporheic microbial communities in response to heavy-metal contamination and assessed group-level differences in resiliency in response to heavy metals. A controlled laboratory study was performed using 20 flowthrough river mesocosms and a repeated-measurement factorial design. A single hyporheic microbial community was exposed to five different levels of an environmentally relevant metal treatment (0, 4, 8, 16, and 30% sterilized contaminated sediments). Community-level responses were monitored at 1, 2, 4, 8, and 12 weeks via denaturing gradient gel electrophoresis and quantitative PCR using group-specific primer sets for indigenous populations most closely related to the α-, β-, and γ-proteobacteria. There was a consistent, strong curvilinear relationship between community composition and heavy-metal contamination (R2 = 0.83; P < 0.001), which was evident after only 7 days of metal exposure (i.e., short-term response). The abundance of each phylogenetic group was negatively affected by the heavy-metal treatments; however, each group recovered from the metal treatments to a different extent and at a unique rate during the course of the experiment. The structure of hyporheic microbial communities responded rapidly and at contamination levels an order of magnitude lower than those shown to elicit a response in aquatic macroinvertebrate assemblages. These studies indicate that hyporheic microbial communities are a sensitive and useful indicator of heavy-metal contamination in streams.  相似文献   

18.
Prior field studies by our group have demonstrated a relationship between fluvial deposition of heavy metals and hyporheic-zone microbial community structure. Here, we determined the rates of change in hyporheic microbial communities in response to heavy-metal contamination and assessed group-level differences in resiliency in response to heavy metals. A controlled laboratory study was performed using 20 flowthrough river mesocosms and a repeated-measurement factorial design. A single hyporheic microbial community was exposed to five different levels of an environmentally relevant metal treatment (0, 4, 8, 16, and 30% sterilized contaminated sediments). Community-level responses were monitored at 1, 2, 4, 8, and 12 weeks via denaturing gradient gel electrophoresis and quantitative PCR using group-specific primer sets for indigenous populations most closely related to the alpha-, beta-, and gamma-proteobacteria. There was a consistent, strong curvilinear relationship between community composition and heavy-metal contamination (R(2) = 0.83; P < 0.001), which was evident after only 7 days of metal exposure (i.e., short-term response). The abundance of each phylogenetic group was negatively affected by the heavy-metal treatments; however, each group recovered from the metal treatments to a different extent and at a unique rate during the course of the experiment. The structure of hyporheic microbial communities responded rapidly and at contamination levels an order of magnitude lower than those shown to elicit a response in aquatic macroinvertebrate assemblages. These studies indicate that hyporheic microbial communities are a sensitive and useful indicator of heavy-metal contamination in streams.  相似文献   

19.
We examined costs of sexual reproduction and clonal propagation, and their consequences for resource allocation in the clonal stoloniferous herb, Potentilla anserina, a typical pioneer species in disturbed areas. We used heavy-metal treatment in soil to create unfavourable growing conditions, because costs of reproduction are more likely to be expressed when resources are limited. We also studied whether heavy metals affect the plasticity of clonal growth form that enables the plants to avoid poor growing conditions. Ramets collected from field were grown in a greenhouse under the heavy-metal treatment consisting of a control and two levels of heavy-metals added in soil. Clonal propagation was costly in terms of total biomass of flowering ramets. Also the costs of sexual reproduction were detected in flowering ramets. Contrary to our predictions, the costs of flower production were visible in the control but not in the heavy-metal contaminated plants. Only the flowering ramets were able to produce longer stolons under heavy-metal stress, but the stolon biomass was not affected by heavy metals. Results indicate that clonal propagation and sexual reproduction may be costly for P. anserina. However, the costs are modified by heavy-metal contamination.Co-ordinating editor: J. Tuomi  相似文献   

20.
The food and water we consume are often contaminated with a range of chemicals and heavy metals, such as lead, cadmium, arsenic, chromium, and mercury, that are associated with numerous diseases. Although heavy-metal exposure and contamination are not a recent phenomenon, the concentration of metals and the exposure to populations remain major issues despite efforts at remediation. The ability to prevent and manage this problem is still a subject of much debate, with many technologies ineffective and others too expensive for practical large-scale use, especially for developing nations where major pollution occurs. This has led researchers to seek alternative solutions for decontaminating environmental sites and humans themselves. A number of environmental microorganisms have long been known for their ability to bind metals, but less well appreciated are human gastrointestinal bacteria. Species such as Lactobacillus, present in the human mouth, gut, and vagina and in fermented foods, have the ability to bind and detoxify some of these substances. This review examines the current understanding of detoxication mechanisms of lactobacilli and how, in the future, humans and animals might benefit from these organisms in remediating environmental contamination of food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号