首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of in vivo exposure with fenvalerate, esfenvalerate andDDT on hepatic gap junctional intercellular communication (GJIC) in Sprague-Dawley (SD) rats were examined by in vivolin vitro dye-transfer assay and by immunohistochemical staining of connexin 32 (C×32, major liver gap junction protein). Fenvalerate (75 mg/kg/day), esfenvalerate (25 mg/kg/day), DDT (50 mg/kg/day) and corn oil (vehicle control, 5mllkglday) were administered orally once a day. Animals were killed at weeks 1, 2, 4 and 6 after starting the experiment. In the fenvalerate- and esfenvalerate-groups, no compound-related changes in GJIC and C×32 expression were observed. On the contrary, in the DDT-group, average sizes of the dye spread after injection of Lucifer Yellow decreased at weeks 1, 2 and 4, and the area per GJ spot shown by C×32-immunohistochemical staining decreased at weeks 4 and 6. It is concluded that neither fenvalerate nor esfenvalerate inhibits hepatic GJIC with in vivo exposure.  相似文献   

2.
拟除虫菊酯的杀虫活性和温度的关系   总被引:2,自引:0,他引:2  
除了戊酸醚酯对苜蓿蚜呈弱的正温度系数外,杀灭菊酯、二氯苯醚菊酯、氯氰菊酯、溴氰菊酯、氟氰菊酯及百树菊酯,都呈负温度系数。杀灭菊酯、戊酸醚酯、二氯苯醚菊酯、氯氰菊酯、溴氰菊酯和氟氰菊酯,对梨网蝽全部呈正温度系数。氯氰菊酯对粘虫呈负温度系数,杀灭菊酯、戊酸醚酯、二氯苯醚菊酯和溴氰菊酯都呈正温度系数。杀灭菊酯和溴氰菊酯对粘虫卵也呈正温度系数。杀灭菊酯对小菜蛾的杀虫活性,受温度的影响不明显,而戊酸醚酯则呈负温度系数。杀灭菊酯和戊酸醚酯对蚊幼呈正温度系数,而二氯苯醚菊酯则呈负温度系数。  相似文献   

3.
An antibody to phenoxybenzoic acid (PBA), the conserved chemical region of pyrethroids, was developed using a domain antibody (DAB) library to enable pyrethroid detection in agricultural products. The DAB library, constructed without animal immunization and based on a human VH framework, displayed repertoires on filamentous bacteriophage. After four rounds of panning, we obtained five domain antibodies that are capable of binding to PBA. Antibody A3 has strong identification capability to cypermethrin, β-cypermethrin, and fenvalerate. The antibody A3 was used to develop an enzyme-linked immunosorbent assay (ELISA). The IC50 values were 2.586, 1.814, and 2.251 μg/ml for cypermethrin, β-cypermethrin, and fenvalerate, respectively. The assay shows weak competition with flucythrinate but shows no competition with fenpropathrin, deltamethrin, and permethrin. The developed ELISA process was successfully applied to fortified Chinese cabbage samples, with the recoveries of cypermethrin, β-cypermethrin, and fenvalerate ranging from 84.4 to 112.3%. We developed an immunoassay to detect pyrethroids depending on the domain antibody library, which overcomes the limitation of requiring protein antigen to immunize animals raising antibody.  相似文献   

4.
Seven pyrethroids, i.e., cypermethrin, permethrin, deltamethrin, bioresmethrin, resmethrin, cismethrin and fenvalerate, were not found to be mutagenic in (a) Salmonella typhimurium strains TA100 or TA98 in the presence or absence of a rat liver activation system using the plate incorporation assay and fluctuation tests, or (b) V79 Chinese hamster cells in the presence or absence of hepatocytes.  相似文献   

5.
A newly isolated actinomycete strain HP-S-01 from activated sludge could effectively degrade deltamethrin and its major hydrolysis product 3-phenoxybenzaldehyde. Based on the morphological, cultural, physio-biochemical characteristics, and 16S rDNA sequence analysis, strain HP-S-01 was identified as Streptomyces aureus. Strain HP-S-01 was also found highly efficient in degrading cyfluthrin, bifenthrin, fenvalerate, fenpropathrin, permethrin, and cypermethrin. Strain HP-S-01 rapidly degraded deltamethrin without a lag phase over a wide range of temperature (18~38°C) and pH (5~10), and metabolized to produce α-hydroxy-3-phenoxy-benzeneacetonitrile and 3-phenoxybenzaldehyde by hydrolysis of the carboxylester linkage. The 3-phenoxybenzaldehyde was further oxidized to form 2-hydroxy-4-methoxy benzophenone resulting in its detoxification. No persistent accumulative product was detected by gas chromatography-mass spectrometry (GC/MS) analysis. Response surface methodology was used to optimize degradation conditions. Strain HP-S-01 completely removed 50~300 mg L−1 deltamethrin within 7 days under the optimal degradation conditions. Furthermore, the biodegradation kinetics corresponded with the first-order model. Therefore, strain HP-S-01 is suitable for the efficient and rapid bioremediation of pyrethroid-contaminated environment.  相似文献   

6.
All six insecticide active ingredients in pyrethrum extract were quantified by supercritical fluid chromatography and carbon calibration. Allethrin is a suitable reference compound for carbon calibration and pyrethrins calibrations. Carbon quantification in SFC is also applied to pyrethroids (phenothrin, permethrin, cypermethrin, fenvalerate and deltamethrin) and alkanes. Halogen substitution on pyrethroids requires halogens on the reference calibration compound. The method was applied to commercial extracts.  相似文献   

7.
A field-collected strain of the German cockroach, Blattella germanica (L.), was highly resistant to 10 pyrethroid insecticides (cyfluthrin, cyhalothrin, cypermethrin, fenvalerate, esfenvalerate, fluvalinate, permethrin, resmethrin, sumithrin, tralomethrin) based on topical applications and comparison with a known susceptible strain. Resistance ratios ranged from 29 to 337. In general, pyrethroid compounds with an alpha-cyano functional group were more toxic than those lacking this moiety, but resistance ratios were similar for both classes of compound. The metabolic inhibitors DEF and PBO were tested for synergism in conjunction with cypermethrin (alpha-cyano) and permethrin (non alpha-cyano). Application of synergists resulted in partial elimination of resistance, suggesting that the basis of resistance involves enhanced metabolism as well as target site insensitivity. These results suggest that pyrethroid insecticides may have a very short functional life in German cockroach control unless they are used judiciously.  相似文献   

8.
The effect of 9 insecticides recommended for the control of cotton bollworms was studied, under laboratory conditions, on the emergence ofTrichogramma brasiliensis Ashmead from the parasitized eggs ofCorcyra cephalonica (Stainton) of different age groups. The insecticide concentrations tested were equivalent to those recommended for field application viz. phenthoate 0.14%, phosalone 0.15%, endosulfan 0.25%, permethrin 0.014%, monocrotophos 0.13%, fenvalerate 0.014%, cypermethrin 0.014%, fenitrothion 0.30% and quinalphos 0.14%, quinalphos and fenitrothion caused complete inhibition of emergence of the parasitoid from parasitized host eggs of all ages (1 to 7 days); but in general, adverse effect of insecticides on the disruption of emergence decreased with the advancement in the age of the parasitized eggs. For 1 day old parasitized host eggs, emergence ofT. brasiliensis adults varied from 33 to 57% for the remaining 7 treatments. For the 7 days old parasitized host eggs, emergence of parasitoids from the treatments with endosulfan, phosalone and phenthoate was similar to that from control. However, 46 to 59% inhibition of emergence was observed for permethrin, monocrotophos and cypermethrin. Fenvalerate treatment also significantly inhibited the emergence but at a comparatively lower level (40%). Out of 9 insecticides tested, phosalone and fenvalerate were considered to be relatively safe toT. brasiliensis.   相似文献   

9.
Of 10 pyrethroids tested by topical application of male German cockroaches, Blattella germanica (L.), d-phenothrin was the least toxic at 19, 26, or 31 degrees C. lambda-cyhalothrin was most toxic. Pyrethroids with the alpha-cyano moiety (fluvalinate, fenvalerate, cypermethrin, esfenvalerate, tralomethrin, cyfluthrin, and lambda-cyhalothrin) were more toxic than those without this functional group (d-phenothrin, resmethrin, and permethrin). At LC50, toxicity was negatively related to temperature. Temperature-toxicity responses of five of seven alpha-cyano pyrethroids were parallel, possibly indicating qualitatively identical but quantitatively different levels of detoxification enzymes.  相似文献   

10.
A bacterium capable of utilizing pyrethroid pesticide cypermethrin as sole source of carbon was isolated from soil and identified as a Micrococcus sp. The organism also utilized fenvalerate, deltamethrin, perimethrin, 3-phenoxybenzoate, phenol, protocatechuate and catechol as growth substrates. The organism degraded cypermethrin by hydrolysis of ester linkage to yield 3-phenoxybenzoate, leading to loss of its insecticidal activity. 3-Phenoxybenzoate was further metabolized by diphenyl ether cleavage to yield protocatechuate and phenol as evidenced by isolation and identification of metabolites and enzyme activities in the cell-free extracts. Protocatechuate and phenol were oxidized by ortho-cleavage pathway. Thus, the organism was versatile in detoxification and complete mineralization of pyrethroid cypermethrin  相似文献   

11.

Background

Control of Aedes aegypti, the mosquito vector of dengue, chikungunya and yellow fever, is a challenging task. Pyrethroid insecticides have emerged as a preferred choice for vector control but are threatened by the emergence of resistance. The present study reports a focus of pyrethroid resistance and presence of two kdr mutations—F1534C and a novel mutation T1520I, in Ae. aegypti from Delhi, India.

Methodology/Principal Findings

Insecticide susceptibility status of adult-female Ae. aegypti against DDT (4%), deltamethrin (0.05%) and permethrin (0.75%) was determined using WHO''s standard insecticide susceptibility kit, which revealed resistance to DDT, deltamethrin and permethrin with corrected mortalities of 35%, 72% and 76% respectively. Mosquitoes were screened for the presence of kdr mutations including those reported earlier (I1011V/M, V1016G/I, F1534C, D1794Y and S989P), which revealed the presence of F1534C and a novel mutation T1520I. Highly specific PCR-RFLP assays were developed for genotyping of these two mutations. Genotyping using allele specific PCR and new PCR-RFLP assays revealed a high frequency of F1534C (0.41–0.79) and low frequency of novel mutation T1520I (0.13). The latter was observed to be tightly linked with F1534C and possibly serve as a compensatory mutation. A positive association of F1534C mutation with DDT and deltamethrin resistance in Ae. aegypti was established. However, F1534C-kdr did not show significant protection against permethrin.

Conclusions/Significance

The Aedes aegypti population of Delhi is resistant to DDT, deltamethrin and permethrin. Two kdr mutations, F1534C and a novel mutation T1520I, were identified in this population. This is the first report of kdr mutations being present in the Indian Ae. aegypti population. Highly specific PCR-RFLP assays were developed for discrimination of alleles at both kdr loci. A positive association of F1534C mutation with DDT and deltamethrin resistance was confirmed.  相似文献   

12.
神经递质释放与家蝇对拟除虫菊酯抗性关系研究   总被引:13,自引:4,他引:9  
通过生物测定比较溴氰菊酯、氯菊酯和DDT对Dec-R,2C1-R,DDT-R和敏感(SP)家蝇Musca domestica vicina的毒力,表明三个抗性品系对溴氰菊酯、氯菊酯和DDT均有很高的抗性,抗性倍数分别达120 912,6 032和112.2倍,并对上述三种杀虫剂有明显的交互抗性和抗击倒效应。杂交试验表明Dec-R对溴氰菊酯的抗性是一个隐性基因,电生理试验表明抗性家蝇中枢神经系统(CNS)对药剂敏感度的降低是其产生抗性和交互抗性的重要机制。研究结果表明Dec-R和2CLR家蝇品系中存在有击倒抗性因子(Kdr)。当用1×10-7mol/L溴氰菊酯对SP家蝇脑突触体在提高K+浓度去极化后,可加强3H-胆碱的释放,而在Dec-R品系中,溴氰菊酯浓度提高到1×10-4m0l/L也未能加强3H-胆碱的释放,表明溴氰菊酯与神经递质的释放和钠通道亲和性的降低是抗性的主要机制。  相似文献   

13.
Pesticides can significantly harm reproduction in animals and people. Pyrethroids are often used as insecticides, and their toxicity for mammals is considered to be low. However, cypermethrin, deltamethrin and fenvalerate – as potent specific inhibitors of protein phosphatase calcineurin – can influence the meiosis of mammalian oocytes. The objective of this study was to evaluate the effects of these pyrethroids on the in vitro maturation of pig oocytes at different levels of meiotic competence. Under the tested concentrations, cypermethrin, deltamethrin and fenvalerate neither had a significant effect on the viability of oocytes nor did they induce significant degeneration of oocytes. However, these pyrethroids significantly affected meiotic maturation. The effects depended on the stage of meiotic competence of the oocytes. Maturation of growing pig oocytes with partial meiotic competence was induced. On the other hand, in fully grown pig oocytes with full meiotic competence, maturation in vitro was delayed. The specificity of these effects was further supported by the same effect of non-pyrethroidal inhibitors of calcineurin – cyclosporin A or hymenistatin I – on the maturation of oocytes with different levels of meiotic competence. However, pyrethroids, which do not inhibit calcineurin – allethrin or permethrin – had no effect on pig oocyte maturation. We demonstrated a significant effect of pyrethroids on the maturation of mammalian oocytes under in vitro conditions. This indicates that exposure to these substances could affect the fertility of people or animals.  相似文献   

14.
Pyrethroids and the striatal dopaminergic system in vivo   总被引:2,自引:0,他引:2  
1. Type I (permethrin and allethrin) or type II (cypermethrin and fenvalerate) pyrethroids caused 23-37% increases in the striatal content of the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC). 2. Toxicity symptoms and increases in DOPAC were associated with higher brain concentrations for type I (2.6-5.8 micrograms/gm) than type II pyrethroids (0.4-0.6 micrograms/gm). 3. No specific difference in the interaction between type I and II pyrethroids and the striatal dopaminergic system were recognized.  相似文献   

15.
DDT inhibits Na channel inactivation and deactivation, promotes Na channel activation and reduces the resting potential of Xenopus oocytes expressing the Drosophila para Na channel. These changes are only marginally influenced by the single mutation M918T (super-kdr) but are reduced approximately 10-fold by either the single mutation L1014F (kdr) or the double mutation L1014F+M918T, both of which confer resistance to the pyrethroids permethrin and deltamethrin. We conclude that DDT binds either to or in the region of L1014 on IIS6 but only weakly to M918 on the IIS4-S5 linker, which is part of a high-affinity binding site for permethrin and deltamethrin.  相似文献   

16.
N. P. Markwick 《BioControl》1986,31(3):225-236
Methods used for evaluating the effects of pesticides and selecting for pesticide resistance in phytoseiid mites are reviewed from recent literature. In particular slide dip, leaf dip, and leaf disc spray methods are compared. The selection of predatory mites (Typhlodromus pyri Scheuten andPhytoseiulus persimilis Athias-Henriot) for resistance to 3 synthetic pyrethroids (SP-cypermethrin, deltamethrin, and fenvalerate) is described. Tolerance of field populations to all 3 SP was low inP. persimilis but moderate inT. pyri. Field samples of both mite species on leaf discs were sprayed and the survivors were reared in laboratory and/or glasshouse cultures. These cultures were sprayed with repeated doses of SP; initiallyT. pyri was selected with cypermethrin andP. persimilis with fenvalerate. The survival rate ofT. pyri increased at each selection. After 6 selections the survival rate of the laboratory culture was 10 times that of the original field samples. Tests indicated crossresistance inT. pyri to fenvalerate and deltamethrin. Selection with cypermethrin is continuing. In the first 12 months repeated selections ofP. persimilis with fenvalerate gave no significant change in survival rate.
Résumé Les méthodes utilisées pour évaluer les effets des pesticides et pour sélectionner la résistance à ces mêmes produits, des acariens phytoseiides sont analysées d'après la littérature récente. La sélection des acariens prédateurs (Typhlodromus pyri S{upcheuten} etPhytoseiulus persimilis A{upthias}-H{upenriot}) pour leur résistance aux 3 pyréthrinoides de synthèse (cyperméthrine, deltaméthrine et fenvalerate) est décrite. La tolérance des populations naturelles aux 3 pyréthrinoides de synthèse était basse pourP. persimilis, mais modérée pourT. pyri. Les échantillons des 2 espèces d'acariens prélevés à l'extérieur furent traitès sur des disques de feuilles et les survivants furent élevés au laboratoire et/ou dans des cultures en serre. Ces élevages furent traités avec des doses répétées d'un pyréthrinoide, cyperméthrine initialement pourT. pyri et fenvalerate pourP. persimilis. Le taux de survie deT. pyri augmentait à chaque sélection. Après 6 sélections, le taux de survie de l'élevage de laboratoire était 10 fois celui des échantillons d'origine. Les essais révélaient une résistance croisée deT. pyri à la fenvalerate et à la deltaméthrine. La sélection avec la cyperméthrine se poursuit. Au cours des 12 premiers mois, les sélections répétées deP. persimilis avec la fenvalerate ne donnait pas de changement significatif dans le taux de survie.
  相似文献   

17.
The described method permits the determination of the five most important metabolites of the pyrethroids permethrin, cypermethrin, deltamethrin, λ-cyhalothrin, fenvalerate, phenothrin and β-cyfluthrin in human urine in one run. The major urinary metabolites of these substances are cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis-Cl2CA), trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (trans-Cl2CA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (Br2CA), fluoro-3-phenoxybenzoic acid (F-PBA) and 3-phenoxybenzoic acid (3-PBA). After acidic hydrolysis to release the conjugated carboxylic acid metabolites, the analytes were separated from the matrix by means of solid-phase extraction using a reversed-phase column. The components of the eluate were converted to their methyl esters and extracted in hexane. Separation and quantitative analysis of the pyrethroid metabolites was carried out by capillary gas chromatography and mass selective detection. 2-Phenoxybenzoic acid served as an internal standard. The detection limits lay between 0.3 and 0.5 μg per litre urine. The relative standard deviations of the within-series imprecision were between 1% and 6%. The relative recovery rates ranged between 90% and 98%. Using this method we determined the elimination of pyrethroid metabolites in 24-h urine samples from eight pest controllers after indoor application of permethrin. The detected concentrations ranged from 1 to 70 μg g−1 creatinine.  相似文献   

18.
The physiological susceptibility to insecticides and the behavioral responses of four wild‐caught populations of female Anopheles epiroticus to synthetic pyrethroids (deltamethrin, permethrin, and alpha‐cypermethrin) were assessed. Test populations were collected from different localities along the eastern coast, Trat (TR), Songkhla (SK), and Surat Thani (ST) and one population from the western coast, Phang Nga (PN). Results showed that all four populations of An. epiroticus were susceptible to all three synthetic pyrethroids tested. Behavioral responses to test compounds were characterized for all four populations using an excito‐repellency test system. TR displayed the strongest contact excitation (‘irritancy’) escape response (76.8% exposed to deltamethrin, 74.1% permethrin, and 78.4% alpha‐cypermethrin), followed by the PN population (24.4% deltamethrin, 35% permethrin, and 34.4% for alpha‐cypermethrin) by rapidly escaping test chambers after direct contact with surfaces treated with each active ingredient compared with match‐paired untreated controls. Moderate non‐contact repellency responses to all three compounds were observed in the TR population but were comparatively weaker than paired contact tests. Few mosquitoes from the SK and ST populations escaped from test chambers, regardless of insecticide tested or type of trial. We conclude that contact excitation was a major behavioral response in two populations of An. epiroticus, whereas two other populations showed virtually no escape response following exposure to the three pyrethroids. The explanation for these large unexpected differences in avoidance responses between pyrethroid‐susceptible populations of the same species is unclear and warrants further investigation.  相似文献   

19.
Cytochrome P450 monooxygenases are involved in insecticide resistance in insects. We previously observed an increase in CYP6P7 and CYP6AA3 mRNA expression in Anopheles minimus mosquitoes during the selection for deltamethrin resistance in the laboratory. CYP6AA3 has been shown to metabolize deltamethrin, while no information is known for CYP6P7. In this study, CYP6P7 was heterologously expressed in the Spodoptera frugiperda (Sf9) insect cells via baculovirus‐mediated expression system. The expressed CYP6P7 protein was used for exploitation of its enzymatic activity against insecticides after reconstitution with the An. minimus NADPH‐cytochrome P450 reductase enzyme in vitro. The ability of CYP6P7 to metabolize pyrethroids and insecticides in the organophosphate and carbamate groups was compared with CYP6AA3. The results revealed that both CYP6P7 and CYP6AA3 proteins could metabolize permethrin, cypermethrin, and deltamethrin pyrethroid insecticides, but showed the absence of activity against bioallethrin (pyrethroid), chlorpyrifos (organophosphate), and propoxur (carbamate). CYP6P7 had limited capacity in metabolizing λ‐cyhalothrin (pyrethroid), while CYP6AA3 displayed activity toward λ‐cyhalothrin. Kinetic properties suggested that CYP6AA3 had higher efficiency in metabolizing type I than type II pyrethroids, while catalytic efficiency of CYP6P7 toward both types was not significantly different. Their kinetic parameters in insecticide metabolism and preliminary inhibition studies by test compounds in the flavonoid, furanocoumarin, and methylenedioxyphenyl groups elucidated that CYP6P7 had different enzyme properties compared with CYP6AA3. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
Selection experiments with a pyrethrins-susceptible and a pyrethrins-resistant strain of German cockroaches, Blattella germanica (L.), were conducted for 17 generations with either permethrin or fenvalerate as the selecting agent. Large nymphs were left on treated glass surfaces for extended periods of time each generation. Mortality was assessed at 24 h. The level of resistance was determined periodically by time-mortality testing. The VPI-susceptible strain served as the basis for comparison. The pyrethrins-susceptible strain developed resistance to pyrethrins early in the selection process; this strain ultimately became resistant to allethrin, phenothrin, permethrin, fenvalerate, cyfluthrin, and cypermethrin. Fenvalerate caused faster development of resistance than did permethrin. The pyrethrins-resistant strain, selected with fenvalerate, quickly became resistant to allethrin, permethrin, phenothrin, and fenvalerate. Ultimately, it developed resistance to all nine pyrethroids tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号