首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the relationship between changes in abdominal cross-sectional area, measured by respiratory inductive plethysmography, and changes in length in the costal and crural parts of the diaphragm, measured by sonomicrometry, in nine supine, anesthetized dogs. During passive inflation, both parts of the diaphragm shortened and abdominal cross-sectional area increased. During passive deflation, both parts of the diaphragm lengthened and abdominal cross-sectional area decreased. We subsequently used the relationship between costal and crural diaphragmatic length, respectively, and abdominal cross-sectional area during passive inflation-deflation to predict the length changes in the costal and crural diaphragm during quiet breathing before and after bilateral phrenicotomy. In the intact animal the inspiratory shortening in the crural diaphragm was almost invariably greater than predicted from the relationship during passive inflation. During inspiration after phrenicotomy the crural diaphragm invariably lengthened, whereas the costal diaphragm often shortened. In general there was a good correlation between the measured and predicted length change for the crural diaphragm (r = 0.72 before and 0.79 after phrenicotomy) and a poor one for the costal diaphragm (r = 0.05 before and 0.19 after phrenicotomy).  相似文献   

2.
In vivo length and shortening of canine diaphragm with body postural change   总被引:1,自引:0,他引:1  
Using sonomicrometry, we measured the in vivo tidal shortening and velocity of shortening of the costal and crural segments of the diaphragm in the anesthetized dog in the supine, upright, tailup, prone, and lateral decubitus postures. When compared with the supine position, end-expiratory diaphragmatic length varied by less than 11% in all postures, except the upright. During spontaneous breathing, the tidal shortening and the velocity of shortening of the crural segment exceeded that of the costal segment in all postures except the upright and was maximal for both segments in the prone posture. We noted the phasic integrated electromyogram to increase as the end-expiratory length of the diaphragm shortened below and to decrease as the diaphragm lengthened above its optimal length. This study shows that the costal and crural segments have a different quantitative behavior with body posture and both segments show a compensation in neural drive to changes in resting length.  相似文献   

3.
Active and passive shortening of muscle bundles in the canine diaphragm were measured with the objective of testing a consequence of the minimal-work hypothesis: namely, that the ratio of active to passive shortening is the same for all active muscles. Lengths of six muscle bundles in the costal diaphragm and two muscle bundles in the crural diaphragm of each of four bred-for-research beagle dogs were measured by the radiopaque marker technique during the following maneuvers: a passive deflation maneuver from total lung capacity to functional residual capacity, quiet breathing, and forceful inspiratory efforts against an occluded airway at different lung volumes. Shortening per liter increase in lung volume was, on average, 70% greater during quiet breathing than during passive inflation in the prone posture and 40% greater in the supine posture. For the prone posture, the ratio of active to passive shortening was larger in the ventral and midcostal diaphragm than at the dorsal end of the costal diaphragm. For both postures, active shortening during quiet breathing was poorly correlated with passive shortening. However, shortening during forceful inspiratory efforts was highly correlated with passive shortening. The average ratios of active to passive shortening were 1.23 +/- 0.02 and 1.32 +/- 0.03 for the prone and supine postures, respectively. These data, taken together with the data reported in the companion paper (T. A. Wilson, M. Angelillo, A. Legrand, and A. De Troyer, J. Appl. Physiol. 87: 554-560, 1999), support the hypothesis that, during forceful inspiratory efforts, the inspiratory muscles drive the chest wall along the minimal-work trajectory.  相似文献   

4.
Effect of lung inflation on diaphragmatic shortening   总被引:1,自引:0,他引:1  
The effect of lung inflation on chest wall mechanics was studied in 11 vagotomized pentobarbital sodium-anesthetized dogs. Diaphragmatic shortening (percent change from initial length at functional residual capacity, %LFRC) and transdiaphragmatic pressure swings (delta Pdi) were compared with control values over a range of positive-pressure breathing that produced a maximum increase in lung volume to 40% of inspiratory capacity. There was no change in the electromyogram of the diaphragm or parasternal intercostals during positive-pressure breathing. delta Pdi and tidal volume (VT) fell to 52 +/- 3.3 and 42.5 +/- 5% (SE) of control. This was associated with a reduction in the initial resting length of 13 +/- 1.9 and 21 +/- 2.2%LFRC (SE) in the costal and crural diaphragms, respectively. Tidal diaphragmatic shortening, however, decreased to 66 +/- 7 and 57 +/- 7 and the mean velocity decreased to 78 +/- 10 and 63 +/- 8% (SE) of control for the costal and crural diaphragms, respectively. We conclude that the reduction in diaphragmatic shortening is the main determinant of the reduced delta Pdi and VT during lung inflation and relate this to what is currently known about diaphragmatic contractile properties.  相似文献   

5.
Respiratory muscle length was measured with sonomicrometry to determine the relation between inspiratory flow and velocity of shortening of the external intercostal and diaphragm. Electromyographic (EMG) activity and tidal shortening of the costal and crural segments of the diaphragm and of the external intercostal were recorded during hyperoxic CO2 rebreathing in 12 anesthetized dogs. We observed a linear increase of EMG activity and peak tidal shortening of costal and crural diaphragm with alveolar CO2 partial pressure. For the external intercostal, no consistent pattern was found either in EMG activity or in tidal shortening. Mean inspiratory flow was linearly related to mean velocity of shortening of costal and crural diaphragm, with no difference between the two segments. Considerable shortening occurred in costal and crural diaphragm during inspiratory efforts against occlusion. We conclude that the relation between mean inspiratory flow and mean velocity of shortening of costal and crural diaphragm is linear and can be altered by an inspiratory load. There does not appear to be a relationship between inspiratory flow and velocity of shortening of external intercostals.  相似文献   

6.
In vivo length-force relationship of canine diaphragm   总被引:4,自引:0,他引:4  
Diaphragmatic length was measured by sonomicrometry and transdiaphragmatic pressure (Pdi) by conventional latex balloons in eight dogs anesthetized with pentobarbital sodium under passive conditions and during supramaximal phrenic stimulation. The passive length-pressure relationship indicates that the crural part of the diaphragm is more compliant than the costal part. With supramaximal stimulation the costal diaphragm showed a length-pressure relationship similar in shape to in vitro length-tension curves previously described for the canine diaphragm. The crural part has a smaller pressure-length slope than the costal part in the length range from 80% of optimum muscle length (Lo) to Lo. At supine functional residual capacity (FRC) the resting length (LFRC) of the costal and crural diaphragms are not at Lo. The costal part is distended to 105% of Lo, and crural is shortened to 92% of Lo. Tidal shortening will increase the force output of costal while decreasing that of the crural diaphragm. The major forces setting the passive supine LFRC are the abdominal weight (pressure) and the elastic recoil of the lungs. The equilibrium length (resting length of excised diaphragmatic strips) was 79 +/- 3.6% LFRC for the costal diaphragm and 87 +/- 3.9% LFRC for the crural diaphragm. Similar shortening was obtained in the upright position, indicating passive diaphragmatic stretch at supine LFRC.  相似文献   

7.
Effect of body position on regional diaphragm function in dogs   总被引:2,自引:0,他引:2  
The in situ lengths of muscle bundles of the crural and three regions of the costal diaphragm between origin and insertion were determined with a video roentgenographic technique in dogs. At total lung capacity (TLC) in both the prone and supine positions, the length of the diaphragm is not significantly different from the unstressed excised length, suggesting that the diaphragm is not under tension at TLC and that there is a hydrostatic gradient of pleural pressure on the diaphragmatic surface. Except for the ventral region of the costal diaphragm, which does not change length at lung volumes greater than 70% TLC, all other regions are stretched during passive deflations from TLC. Therefore below TLC the diaphragm is under passive tension and supports a transdiaphragmatic pressure (Pdi). The length of the diaphragm relative to its unstressed length is not uniform at functional residual capacity (FRC) and does not follow a strict vertical gradient that reverses when the animal is changed from the supine to the prone position. By inference, the length of muscle bundles is determined by factors other than the vertical gradient of Pdi. During mechanical ventilation, regional shortening is identical to the passive deflation length-volume relationship near FRC. Prone and supine FRC is the same, but the diaphragm is slightly shorter in the prone position. In both positions, during spontaneous ventilation there are no consistent differences in regional fractional shortening, despite regional differences in initial length relative to unstressed length.  相似文献   

8.
In vivo regional diaphragm function in dogs   总被引:4,自引:0,他引:4  
A biplane videofluorographic system was used to track the position of metallic markers affixed to the abdominal surface of the left hemidiaphragm in supine anesthetized dogs. Regional shortening was determined from intermarker distances of rows of markers placed along muscle bundles in the ventral, middle, and dorsal regions of the costal diaphragm and of one row on the crural diaphragm. Considerable variability of regional shortening was seen in a given row, which was reproducible on repeat study in individual dogs but which differed between mechanical ventilation and spontaneous breathing. There were no consistent patterns among dogs. Regional shortening obtained from the change in length of rows extending from chest wall to central tendon showed no consistent differences among dogs during spontaneous breathing. At equal tidal volumes, all regions (except the ventral costal diaphragm) shortened more during spontaneous breathing than during mechanical ventilation.  相似文献   

9.
If sonomicrometry transducers could be implanted permanently into the diaphragm, direct measurements of costal and crural length and shortening could be made during recovery from the laparotomy and then indefinitely in an awake, non-anesthetized mammal. We report results from six canines in which we successfully implanted transducers onto the left hemidiaphragm through a midline laparotomy and measured segmental shortening and ventilation at intervals through 22 days of postoperative recovery. After laparotomy, breathing pattern, including tidal volume, respiratory rate and mean inspiratory flow, stabilized by the 4th postoperative day (POD). Tidal shortening of costal and crural segments increased from 1.82 and 1.45% of end-expiratory length (%LFRC) on the 2nd POD to 5.32 and 8.56% LFRC, respectively, after a mean of 22 POD. Segmental shortening did not stabilize until 10 POD, and the recovery process displayed a sequence of segmental motions: lengthening, biphasic inspiratory lengthening-shortening, and increasing simple shortening. Three weeks after implantation, costal and crural segments were stable and shortening 5.32 and 8.56% LFRC, respectively, and capable of shortening 49% LFRC with maximal phrenic stimulation. In a pair of recovered animals, the initial postoperative dysfunction did not recur after a subsequent, simple laparotomy. At postmortem examination, the chronically implanted sonomicrometer transducers were found to have evoked only a thin fibrotic capsule within the diaphragm.  相似文献   

10.
Changes in length of costal and crural segments of the canine diaphragm were measured by sonomicrometry within the first 100-300 ms of inspiration during CO2 rebreathing in anesthetized animals. Both segments showed small but significant decreases in end-expiratory length during progressive hypercapnia. Although both costal and crural segments showed electromyographic activity within the first 100 ms of inspiration, in early inspiration crural shortening predominated with minimal costal shortening. Neither segment contracted isometrically early in inspiration in the presence of airway occlusion. The amount of crural shortening during airway occlusion exceeded costal shortening; both segments showed increased shortening with prolonged occlusion and increasing CO2. Costal and crural shortening at 100 ms was not different for unoccluded and occluded states. These observations suggest that neural control patterns evoke discrete and unequal contributions from the diaphragmatic segments at the beginning of an inspiration; the crural segment may be predominately recruited in early inspiration. Despite traditional assumptions about occlusion pressure measurement (P0.1), diaphragm segments do not contract isometrically during early inspiratory effort against an occluded airway.  相似文献   

11.
Because the first stage of expiration or "postinspiration" is an active neurorespiratory event, we expect some persistence of diaphragm electromyogram (EMG) after the cessation of inspiratory airflow, as postinspiratory inspiratory activity (PIIA). The costal and crural segments of the mammalian diaphragm have different mechanical and proprioceptive characteristics, so postinspiratory activity of these two portions may be different. In six canines, we implanted chronically EMG electrodes and sonomicrometer transducers and then sampled EMG activity and length of costal and crural diaphragm segments at 4 kHz, 10.2 days after implantation during wakeful, resting breathing. Costal and crural EMG were reviewed on-screen, and duration of PIIA was calculated for each breath. Crural PIIA was present in nearly every breath, with mean duration 16% of expiratory time, compared with costal PIIA with duration -2. 6% of expiratory time (P < 0.002). A linear regression model of crural centroid frequency vs. length, which was computed during the active shortening of inspiration, did not accurately predict crural EMG centroid frequency values at equivalent length during the controlled relaxation of postinspiration. This difference in activation of crural diaphragm in inspiration and postinspiration is consistent with a different pattern of motor unit recruitment during PIIA.  相似文献   

12.
We studied rib cage distortability and reexamined the mechanical action of the diaphragm and the rib cage muscles in six supine anesthetized dogs by measuring changes in upper rib cage cross-sectional area (Aurc) and changes in lower rib cage cross-sectional area (Alrc) and the respective pressures acting on them. During quiet breathing in the intact animal the rib cage behaved as a unit (Aurc: 14.6 +/- 7.9 vs. Alrc: 15.1 +/- 9.6%), whereas considerable distortions of the rib cage occurred during breathing after bilateral phrenicotomy (Aurc: 21.0 +/- 5.1 vs. Alrc: 7.0 +/- 4.8%). These distortions were even more pronounced during phrenic nerve stimulation and separate stimulation of the costal and crural parts of the diaphragm (e.g., phrenic nerve stimulation; Aurc: -7.1 +/- 5.1 vs. Alrc: 6.9 +/- 3.5%). During the latter maneuvers the upper rib cage deflated along the relationship between upper rib cage dimensions and pleural pressure obtained during passive deflation, whereas the lower rib cage inflated close to the relationship between lower rib cage dimensions and abdominal pressure obtained during passive inflation. The latter relationship is expected to differ between costal and crural stimulation, since costal action has both an appositional and insertional component and crural action only has an appositional component. The difference between costal and crural stimulation, however, was relatively small, and the slopes were only slightly steeper for the costal than for the crural stimulation (2.9 +/- 1.2 vs. 2.2 +/- 1.0%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We attempted to measure diaphragmatic tension by measuring changes in diaphragmatic intramuscular pressure (Pim) in the costal and crural parts of the diaphragm in 10 supine anesthetized dogs with Gaeltec 12 CT minitransducers. During phrenic nerve stimulation or direct stimulation of the costal and crural parts of the diaphragm in an animal with the chest and abdomen open, Pim invariably increased and a linear relationship between Pim and the force exerted on the central tendon was found (r greater than or equal to 0.93). During quiet inspiration Pim in general decreased in the costal part (-3.9 +/- 3.3 cmH2O), whereas it either increased or slightly decreased in the crural part (+3.3 +/- 9.4 cmH2O, P less than 0.05). Similar differences were obtained during loaded and occluded inspiration. After bilateral phrenicotomy Pim invariably decreased during inspiration in both parts (costal -4.3 +/- 6.4 cmH2O, crural -3.1 +/- 0.6 cmH2O). Contrary to the expected changes in tension in the muscle, but in conformity with the pressure applied to the muscle, Pim invariably increased during passive inflation from functional residual capacity to total lung capacity (costal +30 +/- 23 cmH2O, crural +18 +/- 18 cmH2O). Similarly, during passive deflation from functional residual capacity to residual volume, Pim invariably decreased (costal -12 +/- 19 cmH2O, crural -12 +/- 14 cmH2O). In two experiments similar observations were made with saline-filled catheters. We conclude that although Pim increases during contraction as in other muscles, Pim during respiratory maneuvers is primarily determined by the pleural and abdominal pressures applied to the muscle rather than by the tension developed by it.  相似文献   

14.
We investigated the relationship between the volumes displaced by the diaphragm and the abdominal wall during spontaneous breathing in supine anesthetized dogs. Diaphragmatic volume displacement (Vdi) was calculated from measurements taken from anteroposterior fluoroscopic images employing a previously described geometric model. The volume displacement of the abdominal wall (Vabd) was measured with a calibrated Respitrace. Shortening of single diaphragm muscle bundles in costal and crural regions was measured as the distance between radiopaque beads sutured to the peritoneal surface of the muscle. We found that Vdi always exceeded Vabd, but Vabd/Vdi was larger in animals in which the abdominal wall was more compliant. In this preparation, Vdi is better correlated with costal than with crural shortening. Vabd did not correlate with either costal or crural shortening. We infer that the difference between Vdi and Vabd reflects the volume displacement of the lower rib cage caused by diaphragm contraction. This volume difference was tightly correlated with costal shortening. We conclude from these data that coupling between Vdi and Vabd is influenced by the relative compliances of the chest wall and abdomen. Shortening of regions of the diaphragm may have variable relationships to the measured volume displacement, but costal shortening is intimately related to expansion of the lower rib cage.  相似文献   

15.
In nine anesthetized supine spontaneously breathing dogs, we compared moving average electromyograms (EMGs) of the costal diaphragm and the third parasternal intercostal muscles with their respective respiratory changes in length (measured by sonomicrometry). During resting O2 breathing the pattern of diaphragm and intercostal muscle inspiratory shortening paralleled the gradually incrementing pattern of their moving average EMGs. Progressive hypercapnia caused progressive increases in the amount and velocity of respiratory muscle inspiratory shortening. For both muscles there were linear relationships during the course of CO2 rebreathing between their peak moving average EMGs and total inspiratory shortening and between tidal volume and total inspiratory shortening. During single-breath airway occlusions, the electrical activity of both the diaphragm and intercostal muscles increased, but there were decreases in their tidal shortening. The extent of muscle shortening during occluded breaths was increased by hypercapnia, so that both muscles shortened more during occluded breaths under hypercapnic conditions (PCO2 up to 90 Torr) than during unoccluded breaths under normocapnic conditions. These results suggest that for the costal diaphragm and parasternal intercostal muscles there is a close relationship between their electrical and mechanical behavior during CO2 rebreathing, this relationship is substantially altered by occluding the airway for a single breath, and thoracic respiratory muscles do not contract quasi-isometrically during occluded breaths.  相似文献   

16.
To follow regional deformation of the diaphragm in dogs, radiopaque markers were implanted under surgical anesthesia into different anatomic regions of the muscle in triangular arrays (approximately 1 cm to a side). After recovery from surgery, changes in area and shape of the triangles were followed with biplane cinefluorography during quiet breathing and during inspiratory efforts against an occluded airway (Mueller maneuvers). From changes in shape of the triangles during contraction, area changes were decomposed into a major direction and magnitude of shortening (Eg1) and a minor length change (Eg2) perpendicular to Eg1, both expressed as a fraction of initial length at end expiration. With the use of these techniques, systematic differences in regional area change were observed in different parts of the diaphragm during inspiratory efforts at different lung volumes. Regional area always decreased during contraction in the crural and midcostal zones of apposition to the rib cage. Area decreased less and often increased during inspiratory efforts in the costal dome near the central tendon and in the costal region near its rib cage insertion. Differences in regional area change were not due to differences in the Eg1 in different parts of the diaphragm but were a consequence of differences in widening of the muscle along Eg2 perpendicular to the direction of Eg1. As lung volume was passively increased above functional residual capacity, regional area decreased in all parts of the diaphragm except in the costal regions near rib cage insertion, where area increased.  相似文献   

17.
Regional distribution of blood flow within the diaphragm   总被引:2,自引:0,他引:2  
We investigated the regional distribution of blood flow (Q) within the costal and crural portions of the diaphragm in a total of eight anesthetized supine mongrel dogs. Q was measured with 15-microns microspheres, radiolabeled with three different isotopes, injected into the left ventricle during spontaneous breathing (SB), inspiratory resistive loading (IR), and mechanical ventilation after paralysis (P). At necropsy, the costal and crural portions of each hemidiaphragm were arbitrarily subdivided along a sagittal plane into five to seven and three sections, respectively. During P, there was a dorsoventral Q gradient within the costal part of the diaphragm. During SB there was a fourfold increase in the gradient of Q. Furthermore, during IR, in which mouth pressures of -16 +/- 4 cmH2O were generated, there was a further increase in the gradient of Q. During both SB and IR, Q to the most ventral portion of the costal diaphragm was 26 +/- 6% less than the peak value. In two dogs, studied prone and supine, there was no difference in the Q gradients between the two postures. Over the dorsal 80% of the costal diaphragm there was also a dorsoventral gradient of muscle thickness, such that the most dorsal part was 54 +/- 2% (n = 5) that of the ventral portion. In contrast, there was no consistent gradient of Q or muscle thickness within the crural diaphragm. Our results demonstrate a topographical gravity-independent distribution of Q in the costal, but not the crural, diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We studied chest wall mechanics at functional residual capacity (FRC) and near total lung capacity (TLC) in 14 supine anesthetized and vagotomized dogs. During breathing near TLC compared with FRC, tidal volume decreased (674 +/- 542 vs. 68 +/- 83 ml; P less than 0.025). Both inspiratory changes in gastric pressure (4.5 +/- 2.5 vs. -0.2 +/- 2.0 cmH2O; P less than 0.005) and changes in abdominal cross-sectional area (25 +/- 17 vs. -1.0 +/- 4.2%; P less than 0.001) markedly decreased; they were both often negative during inspiration near TLC. Parasternal intercostal shortening decreased (-3.0 +/- 3.7 vs. -2.0 +/- 2.7%), whereas diaphragmatic shortening decreased slightly more in both costal and crural parts (costal -8.4 +/- 2.9 vs. -4.3 +/- 4.1%, crural -22.8 +/- 13.2 vs. -10.0 +/- 7.5%; P less than 0.05). As a result, the ratio of parasternal to diaphragm shortening increased near TLC (0.176 +/- 0.135 vs. 0.396 +/- 0.340; P less than 0.05). Electromyographic (EMG) activity in the parasternals slightly decreased near TLC, whereas the EMG activity in the costal and crural parts of the diaphragm slightly increased. We conclude that 1) the mechanical outcome of diaphragmatic contraction near TLC is markedly reduced, and 2) the mechanical outcome of parasternal intercostal contraction near TLC is clearly less affected.  相似文献   

19.
We have previously shown that the costal and crural parts of the diaphragm have different actions on the rib cage (RC) and that the tension developed in one part is not transmitted perfectly to the other. Thus the diaphragm can be modeled pneumatically or electrically as two generators or pumps in series between the lung and abdomen. As such, the force developed by diaphragmatic contraction is the sum of the forces developed in each part, whereas the volume displaced is the same for each part and equal to the total volume displaced. The costal part of the diaphragm is in series with the intercostal and accessory (IA) muscles between the lung and RC, whereas the crural part is in parallel. The volume displaced by simultaneous contraction of the crural part and IA is the sum of volumes displaced by each part. The action of pleural and abdominal pressure [acting through the area of apposition (Aap) of the diaphragm to RC] can be modelled as a summing junction between IA and RC. With hyperinflation the costal part acts more and more in parallel with both IA and the crural part, whereas Aap diminishes, so that the ability to develop large forces decreases independently of the muscles' force-length relationships. The model also predicts that the factors determining the length of the costal and crural parts are different. Finally, the parallel and serial arrangement of the inspiratory musculature allows for increases in maximum power, maximum force, and maximum velocity by appropriate recruitment of the various muscle groups.  相似文献   

20.
Functional characteristics of canine costal and crural diaphragm   总被引:1,自引:0,他引:1  
We estimated the in situ force-generating capacity of the costal and crural portions of the canine diaphragm by relating in vitro contractile properties and diaphragmatic dimensions to in situ lengths. Piezoelectric crystals were implanted on right costal and left crural diaphragms of anesthetized dogs, via midline laparatomy. With the abdomen reclosed, diaphragm lengths were recorded at five lung volumes. Contractile properties of excised muscle bundles were then measured. In vitro force-frequency and length-tension characteristics of the costal and crural diaphragms were virtually identical; their optimal force values were 2.15 and 2.22 kg/cm2, respectively. In situ, at residual volume, functional residual capacity (FRC), and total lung capacity the costal diaphragm lay at 102, 95, and 60% of optimal length (Lo), whereas the crural diaphragm lay at 88, 84, and 66% of Lo. Muscle cross-sectional area was 40% greater in costal than in crural diaphragms. Considering in situ lengths, cross-sectional areas, and in vitro length-tension characteristics at FRC, the costal diaphragm could exert 60% more force than the crural diaphragm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号