首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
人工microRNAs对拟南芥At1g13770和At2g23470基因的特异沉默   总被引:1,自引:0,他引:1  
Li WC  Zhao SQ 《遗传》2012,34(3):348-355
DUF647(Domain of unknown function 647)蛋白家族是在真核生物中广泛存在的、高度保守的蛋白家族。拟南芥中该基因家族共有6个成员,迄今为止拟南芥DUF647家族中4个成员的功能尚不清楚。文章以拟南芥内源MIR319a前体为骨架,构建了敲减DUF647家族中2个基因At1g13770和At2g23470表达的人工microRNAs(Artifical microRNAs,amiRNAs)。利用WMD(Web microRNA designer)平台设计分别靶向At1g13770和At2g23470基因的amiRNAs序列,通过重叠PCR置换拟南芥MIR319a前体序列。构建融合amiRNAs前体的植物表达载体pCHF3-amiRNAs,在农杆菌介导下转化拟南芥。RT-PCR分析表明,amiRNAs能够显著抑制At1g13770和At2g23470基因的表达,获得了抑制效果明显的转基因株系。At2g23470-amiRNA转基因植株At2g23470转录水平的下调导致育性严重下降。文章为进一步研究这两个基因的功能奠定了良好的基础。  相似文献   

2.
DUF579 (domain of unknown function 579) family proteins contain a DUF579 domain structure but vary greatly in their overall sequence similarity. Several DUF579 proteins have been found to play a role in cell wall biosynthesis in Arabidopsis, while DUF579 family genes have not yet been systematically investigated in Populus. In this study, the Populus DUF579 family proteins were found to be localized in different cell types and subcellular locations. The diverse expression patterns of the proteins indicate that they may perform different functions in Populus. Among the DUF579 family members, PtrDUF579-1 is found to be specifically expressed in vascular cambium zone cells where it is localized in the Golgi apparatus. Suppression of PtrDUF579-1 expression reduced plant height and stem diameter size. Cambium cell division and xylem tissue growth was inhibited while secondary cell wall formation was unchanged in PtrDUF579-1 suppressed plants. Cell walls analysis showed that the composition of the pectin fraction of the cambium cell wall was altered while other polysaccharides were not affected in PtrDUF579-1 suppressed plants. This observation suggest cambium expressed PtrDUF579-1 may affect cell wall biosynthesis and be involved in cambium cell proliferation in Populus. Overall, DUF579 family proteins play a diverse set of roles in Populus.  相似文献   

3.
李文超  赵淑清 《遗传》2012,34(3):348-355
DUF647 (Domain of unknown function 647) 蛋白家族是在真核生物中广泛存在的、高度保守的蛋白家族。拟南芥中该基因家族共有6个成员, 迄今为止拟南芥DUF647家族中4个成员的功能尚不清楚。文章以拟南芥内源MIR319a前体为骨架, 构建了敲减DUF647家族中2个基因At1g13770和At2g23470表达的人工microRNAs(Artifical microRNAs, amiRNAs)。利用WMD(Web microRNA designer)平台设计分别靶向At1g13770和At2g23470基因的amiRNAs序列, 通过重叠PCR置换拟南芥MIR319a前体序列。构建融合amiRNAs前体的植物表达载体pCHF3-amiRNAs, 在农杆菌介导下转化拟南芥。RT-PCR分析表明, amiRNAs能够显著抑制At1g13770和At2g23470基因的表达, 获得了抑制效果明显的转基因株系。At2g23470-amiRNA转基因植株At2g23470转录水平的下调导致育性严重下降。文章为进一步研究这两个基因的功能奠定了良好的基础。  相似文献   

4.
5.
When the lysoglycerophospholipid (GPL) acyltransferase At1g78690 from Arabidopsis thaliana is over-expressed in Escherichiacoli a headgroup acylated GPL, acyl phosphatidylglycerol (PG), accumulates despite that in vitro this enzyme catalyzes the transfer of an acyl chain from acyl-CoA to the sn-2 position of 1-acyl phosphatidylethanolamine (PE) or 1-acyl PG to form the sn-1, sn-2, di acyl PE and PG respectively; it does not acylate PG to form acyl PG. To begin to understand why the overexpression of a lyso GPL acyltransferase leads to the accumulation of a headgroup acylated GPL in E. coli we investigated the headgroup specificity of At1g78690. Using membranes prepared from E. coli overexpressing At1g78690, we assessed the ability of At1g78690 to catalyze the transfer of acyl chains from acyl-coenzyme A to a variety of lyso GPL acyl acceptors including lyso-phosphatidic acid (PA), -phosphatidylcholine (PC), -phosphatidylserine (PC), -phosphatidylinositol (PI) and three stereoisoforms of bis(monoacylglycero)phosphate (BMP). The predicted products were formed when lyso PI and lyso PC were used as the acyl acceptor but not with lyso PC or lyso PA. In addition, At1g78690 robustly acylates two BMP isoforms with sn-2 and/or sn-2′ hydroxyls in the R-stereoconfiguration, but not the BMP isoform with the sn-2 and sn-2′ hydroxyls in the S-stereoconfiguration. This strongly suggests that At1g78690 is stereoselective for hydroxyls with R-stereochemistry. In addition, this robust acylation of BMPs by At1g78690, which yields acyl PG like molecules, may explain the mechanism by which At1g78690 so strikingly alters the lipid composition of E. coli.  相似文献   

6.
7.
The dynamic responses of microtubules (MTs) to internal and external signals are modulated by a plethora of microtubule-associated proteins (MAPs). In higher plants, many plant-specific MAPs have emerged during evolution as advantageous to their sessile lifestyle. Some members of the IQ67 domain (IQD) protein family have been shown to be plant-specific MAPs. However, the mechanisms of interaction between IQD proteins and MTs remain elusive. Here we demonstrate that the domain of unknown function 4005 (DUF4005) of the Arabidopsis IQD family protein ABS6/AtIQD16 is a novel MT-binding domain. Cosedimentation assays showed that the DUF4005 domain binds directly to MTs in vitro. GFP-labeled DUF4005 also decorates all types of MT arrays tested in vivo. Furthermore, we showed that a conserved stretch of 15 amino acid residues within the DUF4005 domain, which shares sequence similarity with the C-terminal MT-binding domain of human MAP Kif18A, is required for the binding to MTs. Transgenic lines overexpressing the DUF4005 domain displayed a spectrum of developmental defects, including spiral growth and stunted growth at the organismal level. At the cellular level, DUF4005 overexpression caused defects in epidermal pavement cell and trichome morphogenesis, as well as abnormal anisotropic cell elongation in the hypocotyls of dark-grown seedlings. These data establish that the DUF4005 domain of ABS6/AtIQD16 is a new MT-binding domain, overexpression of which perturbs MT homeostasis in plants. Our findings provide new insights into the MT-binding mechanisms of plant IQD proteins.  相似文献   

8.
9.
10.
Genome sequence of Arabidopsis thaliana (Arabidopsis) revealed two psbO genes (At5g66570 and At3g50820) which encode two distinct PsbO isoforms: PsbO1 and PsbO2, respectively. To get insights into the function of the PsbO1 and PsbO2 isoforms in Arabidopsis we have performed systematic and comprehensive investigations of the whole photosynthetic electron transfer chain in the T-DNA insertion mutant lines, psbo1 and psbo2.The absence of the PsbO1 isoform and presence of only the PsbO2 isoform in the psbo1 mutant results in (i) malfunction of both the donor and acceptor sides of Photosystem (PS) II and (ii) high sensitivity of PSII centers to photodamage, thus implying the importance of the PsbO1 isoform for proper structure and function of PSII. The presence of only the PsbO2 isoform in the PSII centers has consequences not only to the function of PSII but also to the PSI/PSII ratio in thylakoids. These results in modification of the whole electron transfer chain with higher rate of cyclic electron transfer around PSI, faster induction of NPQ and a larger size of the PQ-pool compared to WT, being in line with apparently increased chlororespiration in the psbo1 mutant plants. The presence of only the PsbO1 isoform in the psbo2 mutant did not induce any significant differences in the performance of PSII under standard growth conditions as compared to WT. Nevertheless, under high light illumination, it seems that the presence of also the PsbO2 isoform becomes favourable for efficient repair of the PSII complex.  相似文献   

11.
12.
13.
Glycosyltransferase family14 (GT14) belongs to the glycosyltransferase (GT) superfamily that plays important roles in the biosynthesis of cell walls, the most abundant source of cellulosic biomass for bioethanol production. It has been hypothesized that DUF266 proteins are a new class of GTs related to GT14. In this study, we identified 62 GT14 and 106 DUF266 genes (named GT14-like herein) in Arabidopsis, Oryza, Populus, Sorghum and Vitis. Our phylogenetic analysis separated GT14 and GT14-like genes into two distinct clades, which were further divided into eight and five groups, respectively. Similarities in protein domain, 3D structure and gene expression were uncovered between the two phylogenetic clades, supporting the hypothesis that GT14 and GT14-like genes belong to one family. Therefore, we proposed a new family name, GT14/GT14-like family that combines both subfamilies. Variation in gene expression and protein subcellular localization within the GT14-like subfamily were greater than those within the GT14 subfamily. One-half of the Arabidopsis and Populus GT14/GT14-like genes were found to be preferentially expressed in stem/xylem, indicating that they are likely involved in cell wall biosynthesis. This study provided new insights into the evolution and functional diversification of the GT14/GT14-like family genes.  相似文献   

14.
Plant mitochondria include gamma-type carbonic anhydrases (γCAs) of unknown function. In Arabidopsis, the γCAs form a gene family of five members which all are attached to the NADH dehydrogenase complex (complex I) of the respiratory chain. Here we report a functional analysis of gamma carbonic anhydrase 2 (CA2). The gene encoding CA2 is constitutively expressed in all plant organs investigated but it is ten fold induced in flowers, particularly in tapetal tissue. Ectopic expression of CA2 in Arabidopsis causes male sterility in transgenic plants. In normal anther development, secondary thickenings of the endothecial cell wall cause anthers to open upon dehydration. Histological analyses revealed that abnormal secondary thickening prevents anther opening in 35S::CA2 transgenic plants. CA2 abundance in transgenic plants is increased 2–3 fold compared to wild-type plants as revealed by Western blotting analyses. Moreover, abundance of other members of the CA family, termed CA3 and CAL2, is increased in transgenic plants. Oxygen uptake measurements revealed that respiration in transgenic plants is mainly based on NADH reduction by the alternative NADH dehydrogenases present in plant mitochondria. Furthermore, the formation of reactive oxygen species (ROS) is very low in transgenic plants. We propose that reduction in ROS inhibits H2O2 dependent lignin polymerization in CA2 over-expressing plants, thereby causing male sterility. Gene bank accession number: AY085025 (At1g47260).  相似文献   

15.
Gantulga D  Turan Y  Bevan DR  Esen A 《Phytochemistry》2008,69(8):1661-1670
The Arabidopsis genes At1g45130 and At3g52840 encode the β-galactosidase isozymes Gal-5 and Gal-2 that belong to Glycosyl Hydrolase Family 35 (GH 35). The two enzymes share 60% sequence identity with each other and 38–81% with other plant β-galactosidases that are reported to be involved in cell wall modification. We studied organ-specific expression of the two isozymes. According to our western blot analysis using peptide-specific antibodies, Gal-5 and Gal-2 are most highly expressed in stem and rosette leaves. We show by dot-immunoblotting that Gal-5 and Gal-2 are associated with the cell wall in Arabidopsis. We also report expression of the recombinant enzymes in P. pastoris and describe their substrate specificities. Both enzymes hydrolyze the synthetic substrate para-nitrophenyl-β-d-galactopyranoside and display optimal enzyme activity between pH 4.0 and 4.5, similar to the pH optimum reported for other well-characterized plant β-galactosidases. Both Gal-5 and Gal-2 show a broad specificity for the aglycone moiety and a strict specificity for the glycone moiety in that they prefer galactose and its 6-deoxy analogue, fucose. Both enzymes cleave β-(1, 4) and β-(1, 3) linkages in galacto-oligosaccharides and hydrolyze the pectic fraction of Arabidopsis cell wall. These findings suggest that Gal-5 and Gal-2 could be involved in the modification of cell wall polysaccharides.  相似文献   

16.
There are 10 genes in the Arabidopsis genome that contain a domain described in the Pfam database as domain of unknown function 579 (DUF579). Although DUF579 is widely distributed in eukaryotic species, there is no direct experimental evidence to assign a function to it. Five of the 10 Arabidopsis DUF579 family members are co‐expressed with marker genes for secondary cell wall formation. Plants in which two closely related members of the DUF579 family have been disrupted by T‐DNA insertions contain less xylose in the secondary cell wall as a result of decreased xylan content, and exhibit mildly distorted xylem vessels. Consequently we have named these genes IRREGULAR XYLEM 15 (IRX15) and IRX15L. These mutant plants exhibit many features of previously described xylan synthesis mutants, such as the replacement of glucuronic acid side chains with methylglucuronic acid side chains. By contrast, immunostaining of xylan and transmission electron microscopy (TEM) reveals that the walls of these irx15 irx15l double mutants are disorganized, compared with the wild type or other previously described xylan mutants, and exhibit dramatic increases in the quantity of sugar released in cell wall digestibility assays. Furthermore, localization studies using fluorescent fusion proteins label both the Golgi and also an unknown intracellular compartment. These data are consistent with irx15 and irx15l defining a new class of genes involved in xylan biosynthesis. How these genes function during xylan biosynthesis and deposition is discussed.  相似文献   

17.
Eighteen genes that encode the proteins with highly conserved Domain of Unknown Function 724 (DUF724) and Agenet domains were identified in plant taxa but not in animals and fungi. They are actively expressed in many different plant tissues, implying that they may play important roles in plants. Here we report the characterization of their structural organizations, expression patterns and protein–protein interactions. In Arabidopsis, the DUF724 genes were expressed in roots, leaves, shoot apical meristems, anthers and pollen grains. At least seven of the ten Arabidopsis DUF724 proteins (AtDuf1 to AtDuf10) were localized in nucleus. Three of them (AtDuf3, AtDuf5 and AtDuf7) may form homodimers or homopolymers, but did not interact with other members of the same family. Together with the significant similarity between DUF724 proteins and FMRP in the fundamental and characteristic molecular architecture, the results implies the DUF724 gene family may be involved in the polar growth of plant cells via transportation of RNAs.  相似文献   

18.
19.
Umate P 《Steroids》2011,76(5):524-529
Cell wall deposition, biosynthesis of steroid hormones, and maintenance of membrane composition and integrity, are some of the crucial functions of sterols in plants. Followed by their synthesis in the endoplasmic reticulum, the sterols accumulate in the plasma membrane. The concept of sterol trafficking in plant cell is not well understood. The oxysterol binding proteins are implicated in sterol transport in non-plant systems. In the study, the oxysterol binding proteins in Arabidopsis and rice are described and classified. The Arabidopsis genome encodes 12 oxysterol binding proteins-related proteins (ORPs) as compared to 6 oxysterol binding proteins (OSBPs/ORPs) in rice. The protein alignment studies reveal that amino acid sequences for oxysterol binding proteins are relatively well conserved in Arabidopsis and rice. The rice OSBPs are classified based on their phylogenetic relationship with Arabidopsis ORPs. The sequence LOGO built on LOC_Os03g16690 indicated presence of fingerprint region of amino acids “EQVSHHPP” for Arabidopsis and rice OSBPs/ORPs. The organization of pleckstrin homology domain is identified in several OSBPs/ORPs in Arabidopsis and rice. The Arabidopsis oligonucleotide array data is explored to understand the expression patterns of ORPs under 17 different experimental conditions. The analysis showed the expression of ORPs in Arabidopsis is necessarily under the control of biotic stress, chemical, elicitor, hormone, light intensity, abiotic stress, and temperature conditions. The linear mean signal values for Arabidopsis ORPs revealed their relative expression patterns in different developmental stages. The genes for ORP3C and ORP3B are highly expressed in all developmental stages that were analyzed. The present study thus indicates crucial functional role of the individual members of this gene family in different environmental stress conditions.  相似文献   

20.
The Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A (CoA) desaturase-like (ADS) gene family contains nine genes encoding fatty acid desaturase-like proteins. The biological function of only one member of the family, fatty acid desaturase5 (AtADS3/FAD5, At3g15850), is known, and this gene encodes the plastidic palmitoyl-monogalactosyldiacylglycerol Δ7 desaturase. We cloned seven members of the gene family that are predicted not to have a chloroplast transit peptide and expressed them in the yeast Saccharomyces cerevisiae. All seven have previously undescribed desaturase activity on very-long-chain fatty acid (VLCFA) substrates and exhibit diverse regiospecificity, catalyzing introduction of double bonds relative to the methyl end of the molecule (n-x) at n-6 (AtADS4, At1g06350), n-7 (AtADS1.3, At1g06100 and AtADS4.2, At1g06360), n-9 (AtADS1, At1g06080 and AtADS2, At2g31360) or Δ9 (relative to the carboxyl end of the molecule) positions (AtADS1.2, At1g06090 and AtADS1.4, At1g06120). Through forward and reverse genetics it was shown that AtADS2 is involved in the synthesis of the 24:1(n-9) and 26:1(n-9) components (X:Y, where X is chain length and Y is number of double bonds) of seed lipids, sphingolipids, and the membrane phospholipids phosphatidylserine, and phosphatidylethanolamine. Plants deficient in AtADS2 expression showed no obvious phenotype when grown under normal growing conditions, but showed an almost complete loss of phosphatidylethanolamine(42:4), phosphatidylserine(42:4), dihydroxy-monohexosylceramide(42:2)-2, trihydroxy-monohexosylceramide(42:2)-3, and trihydroxy-glycosylinositolphosphoceramide(42:2)-3, lipid species that contain the VLCFA 24:1(n-9), and trihydroxy-glycosylinositolphosphoceramide(44:2)-3, a lipid containing 26:1(n-9). Acyl-CoA profiling of these plants revealed a major reduction in 24:1-CoA and a small reduction in 26:1-CoA. Overexpression of AtADS2 resulted in a substantial increase in the percentage of glycerolipid and sphingolipids species containing 24:1 and a dramatic increase in the percentage of very-long-chain monounsaturated fatty acids in the acyl-CoA pool. Plants deficient in AtADS1 expression had reduced levels of 26:1(n-9) in seed lipids, but no significant changes in leaf phospholipids or sphingolipids were observed. These findings indicate that the 24-carbon and 26-carbon monounsaturated VLCFAs of Arabidopsis result primarily from VLCFA desaturation, rather than by elongation of long chain monounsaturated fatty acids.The ADS (for acyl-CoA desaturase-like) gene family of Arabidopsis (Arabidopsis thaliana) encodes a group of nine proteins with homology to the Δ9 acyl-lipid desaturases of cyanobacteria, the Δ9 acyl-CoA desaturases of yeast (Saccharomyces cerevisiae) and mammals (Fukuchi-Mizutani et al., 1998; Heilmann et al., 2004b) and the membrane-bound desaturases of insects (Knipple et al., 2002). Eight of these genes are located in three clusters on chromosomes I and III. The remaining gene, designated AtADS2 (At2g31360), is present on chromosome II. With the exception of Arabidopsis fatty acid desaturase5 (AtADS3/FAD5, At3g15850), which encodes the plastidic palmitoyl-monogalactosyldiacylglycerol Δ7 desaturase (Heilmann et al., 2004b), the biological role of these enzymes in Arabidopsis is currently unknown. AtADS3/FAD5 and a second closely linked homolog designated AtADS3.2 (At3g15870), are the only members of the gene family predicted to encode proteins with a plastid transit peptide.The first study, to our knowledge, to report evidence of desaturase activity associated with an Arabidopsis ADS, AtADS1 (At1g06080), described the heterologous expression of the gene in Brassica juncea. Seeds from transformed plants contained decreased levels of saturated fatty acids and a slight increase in oleic acid content (Yao et al., 2003). Although the evidence was indirect, the results suggested that AtADS1 may encode a Δ9 desaturase. More detailed studies involving in vivo expression of AtADS1, AtADS2, and AtADS3 (without the plastid transit peptide) in yeast (Saccharomyces cerevisiae) have shown that all three enzymes can catalyze the Δ9 or Δ7 desaturation of palmitic (16:0) and stearic (18:0) acids (X:Y, where X is chain length and Y is number of double bonds), with regiospecificity being partly influenced by fatty acid substrate (Heilmann et al., 2004a). In this work, the substrate for desaturation was suggested to be a glycerolipid rather than acyl-CoA. The bifunctionality of these enzymes was further demonstrated by expression in Arabidopsis. When AtADS3 was expressed as the full-length form including the plastid transit peptide, or when AtADS1 and AtADS2 were retargeted to the plastid by the addition of a plastid transit peptide, 16:1Δ7 became the predominant monounsaturated 16-carbon (C16) fatty acid. The Arabidopsis plants used in the study were fab1/fae1 (for fatty acid elongase1) double mutant lines lacking the activity of KASII (for 3-ketoacyl-acyl-carrier protein synthase; FAB1, At1g74960) and the FAE1 condensing enzyme (At4g34520), and consequently exhibiting higher than normal levels of 16:0 and low very-long-chain unsaturated fatty acid content in the seed lipids.Homologs of the Arabidopsis ADS enzymes have been identified in other plant species, but their catalytic activity and acyl-substrates are not well characterized. Heterologous expression of a complementary DNA (cDNA) encoding an ADS-like protein from white spruce (Picea glauca) gave evidence of Δ9 activity when expressed in yeast (Marillia et al., 2002). The lipid substrate of this desaturase was not determined and the cDNA appeared to encode an enzyme with a plastid transit peptide. The Δ5 desaturase catalyzing the synthesis of 20:1Δ5 in the seeds of Limnanthes alba is also an ADS homolog (Cahoon et al., 2000). The substrate for this reaction is thought to be the 20:0-CoA thioester (Pollard and Stumpf, 1980; Moreau et al., 1981). Δ5 desaturase activity on fatty acids with chain length longer than 18 carbons (very-long-chain fatty acids [VLCFAs]) has also been demonstrated from two ADS homologs isolated from Anemone leveillei (Sayanova et al., 2007). Indirect evidence suggesting that both enzymes utilized acyl-CoA substrates was presented based on characterization of acyl-CoA pools in developing seeds of transgenic Arabidopsis expressing the A. leveillei desaturases.In addition to functioning in the synthesis of chloroplast lipids (AtADS3/FAD5) and VLCFAs of certain seed oils, ADS proteins have been suggested to play a role in petal senescence in roses (Rosa spp.; Fukuchi-Mizutani et al., 1995) and the expression of Arabidopsis AtADS1 and AtADS2 appears to be regulated in response to changes in temperature (Fukuchi-Mizutani et al., 1998; Byun et al., 2009). A potential role in drought tolerance has also been suggested for a member of the gene family (At1g06100; Allen et al., 2012). This group of plant enzymes therefore appears to contain members showing a diversity of lipid substrate utilization, desaturation regiospecificity and biological function that merits further investigation.Only four members of the Arabidopsis ADS gene family have documented nomenclature. Based on the existing literature we propose a systematic nomenclature of the ADS gene family based on their chromosomal location and grouping (VLCFA substrates. Forward and reverse genetics have revealed a role for AtADS2 in the production of very-long-chain monounsaturated fatty acids (VLCMUFAs) in seed lipids and in membrane phospholipids and sphingolipids.

Table I.

The Arabidopsis ADS gene family
The Arabidopsis Information Resource LocusGene NameUniversal Protein Resource CodeReferences
At1g06080AtADS1O65797Fukuchi-Mizutani et al. (1998); Heilmann et al. (2004a, 2004b); Yao et al. (2003)
At1g06090AtADS1.2Q9LND9
At1g06100AtADS1.3Q9LND8Allen et al. (2012)
At1g06120AtADS1.4Q9FPD5
At2g31360AtADS2Q9SID2Fukuchi-Mizutani et al. (1998); Heilmann et al. (2004a, 2004b)
At3g15870AtADS3/FAD5Q9LVZ3Heilmann et al. (2004a, 2004b)
At3g15850AtADS3.2Q949X0
At1g06350AtADS4Q9LMI4
At1g06360AtADS4.2Q9LMI3
Open in a separate window  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号