首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The allocation of resources to different life‐history traits should represent the best compromise in fitness investment for organisms in their local environment. When resources are limiting, the investment in a specific trait must carry a cost that is expressed in trade‐offs with other traits. In this study, the relative investment in the fitness‐related traits, growth, reproduction and defence were compared at central and range‐edge locations, using the seaweed Ascophyllum nodosum as a model system. Individual growth rates were similar at both sites, whereas edge populations showed a higher relative investment in reproduction (demonstrated by a higher reproductive allocation and extended reproductive periods) when compared to central populations that invested more in defence. These results show the capability of A. nodosum to differentially allocate resources for different traits under different habitat conditions, suggesting that reproduction and defence have different fitness values under the specific living conditions experienced at edge and central locations. However, ongoing climate change may threaten edge populations by increasing the selective pressure on specific traits, forcing these populations to lower the investment in other traits that are also potentially important for population fitness.  相似文献   

2.
Ascophyllum nodosum L. dominates rocky intertidal shores throughout the temperate North Atlantic. Six microsatellite loci were developed for A. nodosum using enriched libraries. The number of alleles ranged from 9 to 24 and heterozygosities from 0.2213 to 0.7785. Ascophyllum is monotypic. There was no cross‐reactivity observed with Fucus serratus, F. vesiculosus or F. evanescens.  相似文献   

3.
Separate populations at the edge of a species range are receiving great attention and have been shown to be often different from populations in the core area. However, it has rarely been tested whether neighboring peripheral populations are genetically and evolutionarily similar to each other, as expected for their geographical proximity and similar ecological conditions, or differ due to historical contingency. We investigated isolation and differentiation, within‐population genetic diversity and evolutionary relationships among multiple peripheral populations of a cold‐adapted terrestrial salamander, Salamandra atra, at the southern edge of the species core range. We carried out population genetic, phylogeographic, and phylogenetic analyses on various molecular markers (10 autosomal microsatellite loci, three mitochondrial loci with total length >2,100 bp, two protein‐coding nuclear genes) sampled from more than 100 individuals from 13 sites along the southern Prealps. We found at least seven isolated peripheral populations, all highly differentiated from the remaining populations and differentiated from each other at various levels. The within‐population genetic diversity was variable in the peripheral populations, but consistently lower than in the remaining populations. All peripheral populations along the southern Prealps belong to an ancient lineage that is also found in the Dinarides but did not contribute to the postglacial recolonization of the inner and northern Alps. All fully melanistic populations from the Orobian mountains to the southern Dinarides represent a single clade, to the exclusion of the two yellow‐patched populations inhabiting the Pasubio massif and the Sette Comuni plateau, which are distinguished as S. atra pasubiensis and S. atra aurorae, respectively. In conclusion, multiple populations of S. atra at the southern edge of the species core area have different levels of differentiation, different amount of within‐population genetic diversity, and different evolutionary origin. Therefore, they should be regarded as complementary conservation targets to preserve the overall genetic and evolutionary diversity of the species.  相似文献   

4.
Climate change‐driven shifts in species ranges are ongoing and expected to increase. However, life‐history traits may interact with climate to influence species ranges, potentially accelerating or slowing range shifts in response to climate change. Tropical mangroves have expanded their ranges poleward in the last three decades. Here, we report on a shift at the range edge in life‐history traits related to reproduction and dispersal. With a common garden experiment and field observations, we show that Rhizophora mangle individuals from northern populations reproduce at a younger age than those from southern populations. In a common garden at the northern range limit, 38% of individuals from the northernmost population were reproductive by age 2, but less than 10% of individuals from the southernmost population were reproductive by the same age, with intermediate amounts of reproduction from intermediate latitudes. Field observations show a similar pattern of younger reproductive individuals toward the northern range limit. We also demonstrate a shift toward larger propagule size in populations at the leading range edge, which may aid seedling growth. The substantial increase in precocious reproduction at the leading edge of the R. mangle range could accelerate population growth and hasten the expansion of mangroves into salt marshes.  相似文献   

5.
The Fucaceae is a family of brown seaweeds that dominate and frequently co‐occur on North Atlantic rocky shores. We developed nine polymorphic microsatellite markers for the fucoid seaweeds Fucus vesiculosus, F. serratus and Ascophyllum nodosum using a combined, enriched library. Six of these loci were polymorphic in at least two species, showing from two to eight alleles with heterozygosities ranging from 0.41 to 0.85. Loci were also tested on F. spiralis, revealing five polymorphic microsatellite loci in this species.  相似文献   

6.
Global warming will jeopardize the persistence and genetic diversity of many species. Assisted colonization, or the movement of species beyond their current range boundary, is a conservation strategy proposed for species with limited dispersal abilities or adaptive potential. However, species that rely on photoperiodic and thermal cues for development may experience conflicting signals if transported across latitudes. Relocating multiple, distinct populations may remedy this quandary by expanding genetic variation and promoting evolutionary responses in the receiving habitat – a strategy known as assisted gene flow. To better inform these policies, we planted seeds from latitudinally distinct populations of the annual legume, Chamaecrista fasciculata, in a potential future colonization site north of its current range boundary. Plants were exposed to ambient or elevated temperatures via infrared heating. We monitored several life history traits and estimated patterns of natural selection to determine the adaptive value of plastic responses. To assess the feasibility of assisted gene flow between phenologically distinct populations, we counted flowers each day and estimated the degree of temporal isolation between populations. Increased temperatures advanced each successive phenological trait more than the last, resulting in a compressed life cycle for all but the southern‐most population. Warming altered patterns of selection on flowering onset and vegetative biomass. Population performance was dependent on latitude of origin, with the northern‐most population performing best under ambient conditions and the southern‐most performing most poorly, even under elevated temperatures. Among‐population differences in flowering phenology limited the potential for genetic exchange among the northern‐ and southern‐most populations. All plastic responses to warming were neutral or adaptive; however, photoperiodic constraints will likely necessitate evolutionary responses for long‐term persistence, especially when involving populations from disparate latitudes. With strategic planning, our results suggest that assisted colonization and assisted gene flow may be feasible options for preservation.  相似文献   

7.
To understand the thermal plasticity of a coastal foundation species across its latitudinal distribution, we assess physiological responses to high temperature stress in the kelp Laminaria digitata in combination with population genetic characteristics and relate heat resilience to genetic features and phylogeography. We hypothesize that populations from Arctic and cold‐temperate locations are less heat resilient than populations from warm distributional edges. Using meristems of natural L. digitata populations from six locations ranging between Kongsfjorden, Spitsbergen (79°N), and Quiberon, France (47°N), we performed a common‐garden heat stress experiment applying 15°C to 23°C over eight days. We assessed growth, photosynthetic quantum yield, carbon and nitrogen storage, and xanthophyll pigment contents as response traits. Population connectivity and genetic diversity were analyzed with microsatellite markers. Results from the heat stress experiment suggest that the upper temperature limit of L. digitata is nearly identical across its distribution range, but subtle differences in growth and stress responses were revealed for three populations from the species’ ecological range margins. Two populations at the species’ warm distribution limit showed higher temperature tolerance compared to other populations in growth at 19°C and recovery from 21°C (Quiberon, France), and photosynthetic quantum yield and xanthophyll pigment responses at 23°C (Helgoland, Germany). In L. digitata from the northernmost population (Spitsbergen, Norway), quantum yield indicated the highest heat sensitivity. Microsatellite genotyping revealed all sampled populations to be genetically distinct, with a strong hierarchical structure between southern and northern clades. Genetic diversity was lowest in the isolated population of the North Sea island of Helgoland and highest in Roscoff in the English Channel. All together, these results support the hypothesis of moderate local differentiation across L. digitata's European distribution, whereas effects are likely too weak to ameliorate the species’ capacity to withstand ocean warming and marine heatwaves at the southern range edge.  相似文献   

8.
Understanding the factors determining geographic ranges and range shifts of species is a central issue in ecology and evolutionary biology. Research addressing distributional borders from a demographic perspective frequently focused on reproductive traits, finding reproduction reductions or failure at the range margin. However, some of the observed changes in marginal locations could be the result of adaptive adjustments to local, unfavourable conditions, though they have been rarely interpreted from this point of view. In this study we investigated the reproductive patterns of the seaweed Fucus serratus in central and southern marginal locations (SW UK, N Spain) over a 3‐yr period. Our main goals were: 1) to determine the spatial (centre‐margin) and temporal variation in reproductive traits and 2) to test if this variation fits with life‐history predictions for stressful environments. Threshold size for reproduction declined at the range margin, in accordance with life‐history predictions. Nevertheless, we also observed parallel drastic reductions in the percentage of reproductives, reproductive allocation and plant size. The reproductive capacity of marginal locations was thus dramatically reduced in relation to central ones. Furthermore, the decline became more pronounced over the study period. Our results suggests that the viability of marginal populations is at risk. This situation clearly differs from the pattern observed during the last decade. At that time, the species was able to growth and reproduce beyond its distributional boundary at similar rates than inside its range in N Spain. The seaweed was then expanding its distribution and the position of the boundary was set by dispersal limitations. At present, the southern boundary of this species seems to be directly influenced by very unfavourable abiotic conditions, which may be linked to the present scenario of climatic change or to environmental fluctuations acting at shorter‐time scales.  相似文献   

9.
Geographical range shifts of two canopy-forming seaweeds, Himanthalia elongata (L.) S.F. Gray and Fucus serratus L. were investigated at their southern range boundary in Northern Spain from the end of nineteenth century to 2009. Given the good dispersal abilities of H. elongata and its short life-span, we hypothesize that this species will track environmental changes at a faster rate than the perennial and short-distance disperser F. serratus. Our results show a continuous and drastic westward retraction of H. elongata, which has nowadays virtually vanished in Northern Spain, whereas F. serratus is still found in the westernmost area. Despite this, the first species is still relatively abundant in the Iberian Peninsula, whereas the presence of the latter is scattered and reduced. Overall, range shifts fit with the warming trend in sea surface temperature (SST), whereas it is unlikely that increases in grazing pressure or coastal pollution have driven the observed changes, particularly the rapid trend in recent years. Differences in species traits are linked to range dynamics. The higher persistence of F. serratus at eastern shores may thus be related to its longer life span and its greater thermal tolerance. The presence of sporadic populations of H. elongata outside the zone of continuous distribution can be attributed to long-distance dispersal events during cold pulses. Relict populations in isolated and estuarine locations were left behind in the contracting range margins, particularly for F. serratus. In Northern Spain, the westward retreat of large canopy-forming algae seems to be a general phenomenon, involving other species such as kelps. Therefore, an evident reorganization of coastal assemblages is expected, though the temporal extent of changes and the consequences for ecosystem services need to be evaluated.  相似文献   

10.
Although the perennial grass Dactylis glomerata L. has established dominant populations in Japan since its introduction in the 1870s, there have been marked reductions in its abundance in southern and northeastern regions. In order to examine the effects of climatic factors on distribution and differentiation of the naturalized populations of D. glomerata, abundance of 26 populations over a distance of 1500 km along a latitudinal gradient was recorded at each site, and life-history traits of each population were measured in a common garden. It was found that the reduction in abundance was related to the mean summer temperature in southern regions and to the lowest temperature before snow cover in northeastern regions. Recent climatic records in Japan show an increase in the mean summer temperature but no apparent changes in the lowest temperature before snow cover. These data suggest that, assuming the recent trend in climatic changes continues, the population abundance will decrease in southern regions and will change little in the northeastern regions. Germination speed, leaf width and reproductive allocations showed clinal variation over a geographical range, and the southern populations had more rapid germination, narrower leaves and lower reproductive allocation than did the northern populations. On the other hand, seed size and germination date showed margin-center differentiation. Marginal populations in both distributional borders had smaller seeds and lower germination rates than did the central populations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
1. Determined by landscape structure as well as dispersal‐related traits of species, connectivity influences various key aspects of population biology, ranging from population persistence to genetic structure and diversity. Here, we investigated differences in small‐scale connectivity in terms of gene flow between populations of two ecologically important invertebrates with contrasting dispersal‐related traits: an amphipod (Gammarus fossarum) with a purely aquatic life cycle and a mayfly (Baetis rhodani) with a terrestrial adult stage. 2. We used highly polymorphic markers to estimate genetic differentiation between populations of both species within a Swiss pre‐alpine catchment and compared these results to the broader‐scale genetic structure within the Rhine drainage. Landscape genetic approaches were used to test for correlations of genetic and geographical structures and in‐stream barrier effects. 3. We found overall very weak genetic structure in populations of B. rhodani. In contrast, G. fossarum showed strong genetic differentiation, even at spatial scales of a few kilometres, and a clear pattern of isolation by distance. Genetic diversity decreased from downstream towards upstream populations of G. fossarum, suggesting asymmetric gene flow. Correlation of genetic structure with landscape topography was more pronounced in the amphipod. Our study also indicates that G. fossarum might be capable of dispersing overland in headwater regions and of crossing small in‐stream barriers. 4. We speculate that differences in dispersal capacity but also habitat specialisation and potentially the extent of local adaptation could be responsible for the differences in genetic differentiation found between the two species. These results highlight the importance of taking into account dispersal‐related traits when planning management and conservation strategies.  相似文献   

12.
Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small‐scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine‐scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations.  相似文献   

13.
An understanding of the genetic structure and diversity of vector species is crucial for effective control and management. In this study, mitochondrial DNA sequences were used to examine the genetic structure, diversity and demographic history of a black fly vector, Simulium nodosum Puri (Diptera: Simuliidae), in Thailand. A total of 145 sequences were obtained from 10 sampling locations collected across geographical ranges in the country. Low genetic diversity was found in populations of S. nodosum that could be explained by the recent population history of this species. Demographic history analysis revealed a signature of demographic expansion dating back to only 2600–5200 years ago. Recent population expansion in S. nodosum possibly followed an increase in agriculture that enabled its hosts', humans and domestic animals, densities to increase. Alternatively, the Thai populations could be a derivative of an older expansion event in the more northern populations. Mitochondrial DNA genealogy revealed no genetically divergent lineages, which agrees with the previous cytogenetic study. Genetic structure analyses found that only 27% of the pairwise comparisons were significantly different. The most likely explanation for the pattern of genetic structuring is the effect of genetic drift because of recent colonization.  相似文献   

14.
15.
Aim The aim of this study is to detect extant patterns of population genetic structure of Fraxinus mandshurica var. japonica in Japan, and to provide insights into the post‐glacial history of this species during the Holocene. Location Hokkaido and Honshu islands, Japan (including the Oshima and Shimokita peninsulas). Methods We examined nine polymorphic nuclear microsatellite loci to assess genetic variation within and among 15 populations across almost the entire range of the species in Japan. Extant patterns of geographical structure were analysed using Bayesian clustering, Monmonier’s algorithm, analysis of molecular variance, Mantel tests and principal coordinates analysis. Recent bottlenecks within populations and regional genetic variation were also assessed. Results Northern populations (Hokkaido Island and the Shimokita Peninsula) formed a single homogeneous deme, maintaining the highest level of allelic diversity on the Oshima Peninsula. By contrast, southern populations (Honshu Island) demonstrated strong substructure on both coasts. Specifically, populations on the Pacific side of Honshu exhibited significant bottlenecks and erosion of allelic diversity but preserved distinct subclusters diverging from widespread subclusters on the Japan Sea side of this island. Main conclusions Genetic evidence and life history traits suggest that F. mandshurica occupied cryptic northern refugia on the Oshima Peninsula during the Last Glacial Maximum, which is reflected in the species’ extant northern distribution. Strong geographical structure in southern populations, in agreement with fossil pollen records, suggests geographical isolation by mountain ranges running north–south along Honshu. Given that this tree species is cold‐adapted and found in riparian habitats, populations on the Pacific side of Honshu probably contracted into higher‐elevation swamps during warm post‐glacial periods, leading to a reduction of effective population sizes and rare allelic richness.  相似文献   

16.
Understanding the factors that contribute to population genetic divergence across a species' range is a long‐standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present‐day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco – the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic‐Mediterranean refugia after the last glacial period, with leading‐edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long‐distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life‐history and major geographic features interact to shape the distribution of genetic diversity.  相似文献   

17.
Evolutionary processes are expected to be crucial for the adaptation of natural populations to environmental changes. In particular, the capacity of rear edge populations to evolve in response to the species limiting conditions remains a major issue that requires to address their evolutionary potential. In situ quantitative genetic studies based on molecular markers offer the possibility to estimate evolutionary potentials manipulating neither the environment nor the individuals on which phenotypes are measured. The goal of this study was to estimate heritability and genetic correlations of a suite of leaf functional traits involved in climate adaptation for a natural population of the tree Fagus sylvatica, growing at the rear edge of the species range. Using two marker‐based quantitative genetics approaches, we obtained consistent and significant estimates of heritability for leaf phenological (phenology of leaf flush), morphological (mass, area, ratio mass/area) and physiological (δ13C, nitrogen content) traits. Moreover, we found only one significant positive genetic correlation between leaf area and leaf mass, which likely reflected mechanical constraints. We conclude first that the studied population has considerable genetic diversity for important ecophysiological traits regarding drought adaptation and, second, that genetic correlations are not likely to impose strong genetic constraints to future population evolution. Our results bring important insights into the question of the capacity of rear edge populations to evolve.  相似文献   

18.
Aim Because intertidal organisms often live close to their physiological tolerance limits, they are potentially sensitive indicators of climate‐driven changes in the environment. The goals of this study were to assess the effect of climatic and non‐climatic factors on the geographical distribution of intertidal macroalgae, and to predict future distributions under different climate‐warming scenarios. Location North‐western Iberian Peninsula, southern Europe. Methods We developed distribution models for six ecologically important intertidal seaweed species. Occurrence and microhabitat data were sampled at 1‐km2 resolution and analysed with climate variables measured at larger spatial scales. We used generalized linear models and applied the deviance and Bayesian information criterion to model the relationship between environmental variables and the distribution of each target species. We also used hierarchical partitioning (HP) to identify predictor variables with higher independent explanatory power. Results The distributions of Himanthalia elongata and Bifurcaria bifurcata were correlated with measures of terrestrial and marine climate, although in opposite directions. Model projections under two warming scenarios indicated the extinction of the former at a faster rate in the Cantabrian Sea (northern Spain) than in the Atlantic (west). In contrast, these models predicted an increase in the occurrence of B. bifurcata in both areas. The occurrences of Ascophyllum nodosum and Pelvetia canaliculata, species showing rather static historical distributions, were related to specific non‐climatic environmental conditions and locations, such as the location of sheltered sites. At the southernmost distributional limit, these habitats may present favourable microclimatic conditions or provide refuges from competitors or natural enemies. Model performances for Fucus vesiculosus and F. serratus were similar and poor, but several climatic variables influenced the occurrence of the latter in the HP analyses. Main conclusions The correlation between species distributions and climate was evident for two species, whereas the distributions of the others were associated with non‐climatic predictors. We hypothesize that the distribution of F. serratus responds to diverse combinations of factors in different sections of the north‐west Iberian Peninsula. Our study shows how the response of species distributions to climatic and non‐climatic variables may be complex and vary geographically. Our analyses also highlight the difficulty of making predictions based solely on variation in climatic factors measured at coarse spatial scales.  相似文献   

19.
Foundation species can provide habitat that modify abiotic and biotic processes that contribute to ecosystem function. While many studies have focused on the processes and consequences of a focal foundation species, understanding the ecological equivalence of co‐occurring foundation species is important to identify key species responsible for ecosystem function. Here, we investigated the relative contributions of co‐occurring foundation species on abiotic (temperature) and biotic responses of invertebrate species (recruitment, persistence, growth and survival). In a series of experimental field studies, we manipulated foundation species to measure invertebrate recruitment, persistence, and predation. A laboratory experiment measured foundation species effects on herbivore growth. Results demonstrated that macroalgal (Fucus vesiculosus ecad and Ascophyllum nodosum ecad scorpioides) intermediate foundation species provide habitat, food, and alleviate abiotic stress for dominant littorinid herbivores that surpass that provided by the primary species (Spartina alterniflora). These foundation effects were species‐specific with F. vesiculosus ecad important for early life‐history stages (enhanced recruitment and early growth of littorinid snails) and A. nodosum ecad important later on as a refuge from predators (Carcinus meanas) and stressful temperature. Understanding of the different effects of co‐occurring foundation species on population and community processes is necessary for predicting community response to natural disturbance, species invasion, and ecosystem‐based management actions.  相似文献   

20.
The study of the genetic variation of early height growth traits in seedlings helps to predict the possible outcomes of tree populations in the face of climate change. Second‐year height growth of 10 geographically marginal populations of Patagonian cypress (Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri) (Cupressaceae) was characterized under greenhouse conditions. Variation among and within an average of 15 open‐pollinated families (comprising 21 seedlings per family) for each population was analysed for six size and timing traits obtained from fitted Boltzmann growth curves. The among‐family and among‐population variances were 4.03% and 2.74% of the total phenotypic variation, while the residual variance was 84.57% on average. Genetic differentiation among populations was low, except for the maximum growth rate (QST = 0.35) and for growth initiation (QST = 1). For most traits, genetic variation and heritability were variable across populations, except for growth initiation, which showed in general null intra‐population levels of genetic variance. Although no direct associations were found between the additive genetic variation and latitude or altitude, the north range of the distribution was more variable for the pool of the analysed traits. Although most extreme‐marginal populations of A. chilensis would be very limited in their ability to evolve if climate in north‐west Patagonia turns drier and warmer, their long‐term persistence could largely rely on a phenotypic diversification strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号