首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
Different gall inducers belonging to distinct insect orders are rarely known to induce similarly shaped galls on the same host plant organs. We report that Asphondylia tojoi Elsayed & Tokuda sp. nov. (Diptera: Cecidomyiidae) and Ceratoneura sp. (Hymenoptera: Eulophidae) induce galls on leaf buds of Schoepfia jasminodora Sieb. et Zucc. (Schoepfiaceae). We describe the gall midge species as new to science and report a phylogenetic analysis for known Japanese Asphondylia species. We also describe life histories of the two species, based on monthly surveys during 2015–2017: although both species are multivoltine, A. tojoi overwinters as first instars in galls, whereas Ceratoneura sp. possibly does so as adults outside the galls. In addition, the internal structure of galls differed between the two species. Galls containing A. tojoi consist of a single chamber with inner walls clearly covered with whitish fungal mycelia after the gall midges develop into second instars. Those containing the Ceratoneura sp. have multiple chambers with hard black inner walls. Although some eulophids are known to be inquilines of galls induced by Asphondylia species, we consider that the Ceratoneura sp. is probably a true gall inducer because of the different gall structure and absence of fungal mycelia in their galls. This is the first report detailing the annual life history of a Ceratoneura species. Asphondylia tojoi represents the first example of monophagous Asphondylia species with a multivoltine life history on a deciduous tree.  相似文献   

2.
A new species of Isocolus Förster (Hymenoptera, Cynipidae “Aylacini”) is described from Spain: Isocolus leuzeae n. sp. The new species induces galls in flower heads of Leuzea conifera (Asteraceae) and represents the first known aylacin species associated with this plant. The species is closely related to Isocolus lichtensteini (Mayr) that induces galls on stems of Centaurea aspera. Biological data on its life cycle, larva and gall are provided.  相似文献   

3.
Four gall midge species (Diptera: Cecidomyiidae) that induce leaf galls on Styrax japonicus (Styracaceae) were identified to generic level based on larval morphology. Three of these gall midges, which induce whitish hemiglobular galls, flattened subglobular galls, and purple globular galls, respectively, were identified as three genetically distinct species of Contarinia, and the remaining species, which induces globular galls with dense whitish hairs, was identified as a species of Dasineura. Field surveys in Fukuoka, Japan, revealed that adults of these gall midges emerged and oviposited in late March to mid‐April at Mount Tachibana (approximately 200 m a.s.l.) and in late April to early May at Mount Sefuri (about 1050 m a.s.l.), coinciding with the leaf‐opening season of S. japonicus. Larvae of these gall midges mostly developed into third instars by June and then left their galls and dropped to the ground. These species therefore have a life history strategy that differs from that of another S. japonicus‐associated gall midge, Oxycephalomyia styraci, which overwinters as the first instar in ovate swellings, matures rapidly in spring, and emerges directly from the galls.  相似文献   

4.
Abstract Mediterranean representatives of the galling aphid tribe Fordini (Hemiptera: Aphididae: Eriosomatinae) are usually grouped under the subtribe term Fordina. Aphids within Fordina display two‐year life cycles, alternating between Pistacia shrubs, where they induce conspicuous galls, and roots of Poaceae species. The high number of morphs present in a given species, the lack of knowledge of the complete cycle in some species, and the similarity between homologous morphs observed in different species pose many taxonomic problems in this group. We present results of a survey to elucidate the phylogenetic relationships among Fordini species present in the Iberian Peninsula and the Canary Islands. Sequences from the nuclear long‐wavelength opsin (LWO) and translation elongation factor 1α (EF‐1α) genes and from a region of the mitochondrial DNA containing the genes encoding the subunits six and eight of the F‐ATPase were used to infer relationships among 10 Fordina species, namely Smynthurodes betae, Aploneura lentisci, Baizongia pistaciae, two Geoica species (G. utricularia and G. setulosa), three species of Forda and two of Paracletus. Relationships between and within representatives of the genera Forda and Paracletus, both exemplifying taxonomic and ecological problems, were investigated in greater depth through extensive sampling and morphometric analysis. A total of eight, six and six samples from F. formicaria, F. marginata and F. riccobonii, respectively, were included in the survey, along with 40 and 4 samples classified initially as P. cimiciformis and P. donisthorpei, respectively. Our results are relevant to current studies on the evolution of host selection by aphids and on the evolution of gall morphology. Our phylogeny suggests that the group can be divided into two main clades. One clade is composed of aphids inducing small, low‐capacity galls on either P. atlantica or P. terebinthus (Smynthurodes betae and genera Forda and Paracletus). The second clade is composed of species inducing larger galls on P. lentiscus and P. terebinthus (Aploneura lentisci, Baizongia pistaciae and Geoica species). Our results suggest that revision of diagnostic characters used in the taxonomy of Paracletus is needed, and suggest Forda rotunda as a new synonym of Paracletus cimiciformis syn.n.  相似文献   

5.
Morphological, molecular and ecological studies revealed that Kiefferia Mik, 1985 (Diptera: Cecidomyiidae) is not a monotypic genus. Two new species, Kiefferia ezoensis sp. nov. and K. olla sp. nov. from Japan and Korea are added to the known European species, Kiefferia pericarpiicola. The new and known species are distinguishable from each other mainly by the shape of the larval sternal spatula. Molecular data support the results of morphological classification. Species of Kiefferia induce fruit galls on various plant species of Apiaceae. We found that K. ezoensis and K. olla utilized exclusively Angelica ursina and Oenanthe javanica, respectively. In contrast, we listed 37 apiaceous species belonging to 23 genera as hosts for K. pericarpiicola from previously published reports, suggesting the existence of additional undescribed species. Life history patterns of the three species are distinctly different from each other. Mature larvae of K. ezoensis and K. olla drop to the ground with the fruit gall in October and September, respectively, whereas mature larvae of K. pericarpiicola quit the galls and drop to the ground in August. A key to the Kiefferia species is provided based on morphological features and information on life history patterns and host ranges.  相似文献   

6.
Abstract. Thirteen species of Australian acacias are invasive plants in agricultural and native vegetation areas of South Africa. Biological control programmes for Australian acacias in South Africa have been implemented and are aimed at suppressing reproductive vigour and, in some cases, vegetative growth of these weeds. Gall-forming midges are under consideration as potential biological control agents for invasive acacias in South Africa. Entomological surveys in southern Australia found a diverse cecidomyiid fauna associated with the buds, flowers and fruits of Acacia species. Nine new Dasineura species are described and two species, D. acaciaelongifoliae (Skuse) and D. dielsi Rübsaamen, are redescribed. The newly described taxa are D. fistulosa sp.n. , D. furcata sp.n. , D. glauca sp.n. , D. glomerata sp.n. , D. oldfieldii sp.n. , D. oshanesii sp.n. , D. pilifera sp.n. , D. rubiformis sp.n. and D. sulcata sp.n. All eleven species induce galls on ovaries and prevent the formation of fruit. Two general types of gall are caused. Type A comprises woody, tubular galls with larvae living inside ovaries (D. acaciaelongifoliae, D. dielsi, D. fistulosa, D. furcata, D. glauca, D. glomerata, D. oldfieldii). Type B includes soft-tissued, globose galls that belong to four subtypes: inflated, baglike, hairy galls with larvae living between ovaries (D. pilifera); pyriform, pubescent swellings with larvae living inside ovaries (D. rubiformis); globose, hairy, swellings with larvae living superficially on ovaries in ovoid chambers (D. oshanesii); and inconspicuous, glabrous swellings with larvae living superficially on ovaries in shallow groovelike chambers (D. sulcata). The gall types are associated with a particular pupation pattern. In type A galls, larvae pupate within larval chambers in galls, whereas in type B galls pupation takes place between ovaries in galls or in the soil beneath the host tree. Gall midges responsible for the same general gall type are morphologically related and differ from species causing the other gall type. Phylogenetic analysis of a 410 bp fragment of the mitochondrial cytochrome b gene supports the division of the gall midge species into two groups except for D. sulcata, which appears as a subgroup of the group causing type A galls. The interspecific divergence values in group A species were between 0.5 and 3.9% with intraspecific divergence estimates of 0–0.2%. Gall midges causing type B galls had interspecific divergence values of 4.6–7.3% and intraspecific divergence values of 0–3.7%. Closely related biology and morphology together with low cytochrome b divergence estimates suggest a more recent speciation in group A when compared with species of group B. Dasineura rubiformis and D. dielsi are proposed as potential biological control agents for Acacia mearnsii De Wild. and Acacia cyclops A. Cunn. ex G. Don, respectively, in South Africa due to their narrow host range and ability to form high population densities that reduce seed formation. Both species produce galls with low biomass, which makes them compatible with commercial exploitation of their host species in Africa.  相似文献   

7.
The aphid Ceratovacuna nekoashi and its allied species have been a taxonomically difficult group. They form peculiar “cat's‐paw” galls (called “Nekoashi” in Japanese) on Styrax trees and also use Microstegium grasses as their secondary hosts. Through sampling aphids from both Styrax galls and Microstegium grasses in South Korea, Japan and Taiwan, and sequencing their DNA, we made it clear that four distinct species occur in these regions: C. nekoashi (Sasaki), C. oplismeni (Takahashi), C. orientalis (Takahashi) and C. subtropicana sp. nov. In Korea, C. nekoashi forms galls on both S. japonicus and S. obassia, whereas in Japan the species forms galls on the former but not on the latter; our molecular analyses unequivocally indicated the occurrence of a single species in South Korea and mainland Japan. Aphids of the four species on the secondary host were morphologically discriminated from one another. The identity of the primary‐ and secondary‐host generations was also clarified for each species. All four species were found to produce second‐instar sterile soldiers in their Styrax galls, and first‐instar soldiers were found in colonies of C. subtropicana on the secondary host.  相似文献   

8.
The presence of galls on species of Vaucheria was investigated both seasonally and in a number of locations in North America. These galls are induced by the rotifer, Proales werneckii. In an Ohio stream, Vaucheria bursata and V. geminata were found to have galls throughout their growing season; September to January. Galls were most abundant in October and ranged in size from 90–260 μm in width and 140–790 μm in length. New records of Vaucheria with galls from locations in Alabama, California, Georgia, Louisiana, North Carolina, Ohio and Tennessee are reported. Three of the five taxa collected were not previously known to contain galls. In addition, worldwide literature on the distribution of these associated taxa was reviewed.  相似文献   

9.
As part of a long‐term study on the biology and ecology of the intertidal kelp Lessonia nigrescens Bory, we report on the occurrence of gall development on this alga, identified the possible causal agent, and assessed the extent of the phenomenon in two wild stands of the host. Our results showed that galls affecting natural populations of L. nigrescens were associated with the infection by a filamentous brown algal endophyte of the genus Laminariocolax. Assignment to Laminariocolax of the endophytes isolated from cultured gall tissue was based on the (i) high internal transcribed spacer 1 (ITS1) sequence similarity and phylogenetic relationship between the Chilean isolates and several species of the genus Laminariocolax endophytic in other kelps, (ii) reproductive and vegetative features of the endophyte in culture, and (iii) anatomical agreement of fully developed galls of Lessonia with those described for other kelp galls caused by endophytic members of Laminariocolax. Unequivocal identification at the species level of the endophytes infecting Lessonia, however, awaits further studies.  相似文献   

10.
Two types of cecidomyiid leaf galls, cup‐shaped and umbrella‐shaped, occur on Litsea acuminata (Lauraceae) in Taiwan. Based on the concept of gall shapes as “extended phenotypes” of gall inducers, these two types could be induced by different gall midge species. However, galls with intermediate shapes between the two types were recently discovered, which implies that possible genetic exchanges occur between the gall inducers of both types. To clarify the taxonomic status of gall midges responsible for the two types of galls on L. acuminata, we undertook taxonomic, molecular phylogenetic and ecological studies. Our findings show that the two gall types are induced by the same Bruggmanniella species and the species is new to science. We describe the species forming this range of galls as Bruggmanniella litseae sp. n. , and compare their geographical distribution, galling position and morphometry. Based on our results, a possible evolutionary scenario of B. litseae sp. n. is discussed.  相似文献   

11.
Summary We tested the Enemy Impact Hypothesis, which predicts that communities of one tropic level are organized by the tropic level above. In the case of gallforming insect communities, the hypothesis predicts that gall morphology will diverge, minimizing the number of parasitoids shared among species. We used the monophyletic group of gallforming cecidomyiids (Asphondylia spp.) on creosote bush (Larrea tridentata) to test this hypothesis, predicting that species with thicker gall walls should exclude species of parasitoids with shorter ovipositors and have lower levels of parasitism. Of 17 parasitoid species reared from Asphondylia galls on creosote bush, 9 accounted for over 98% of parasitism. Seven of these 9 species had ovipositors long enough to penetrate 10 of 13 gall morphs measured. There was no significant relationship between gall wall thickness and number of associated parasitoid species (r 2=0.01, P>0.05, n=13). There was no relationship between gall wall thickness and types of parasitoid species colonizing galls: parasitoids with the shortest ovipositors colonized all types of gall morphs and were dominant members of the parasitoid assemblages in galls with the thickest walls. Ultimately, there were no significant differences in percent parasitism among Asphondylia species, regardless of gall wall thickness. We found no difference in numbers of associated parasitoids or percent parasitism in galls with different textures (e.g. hairy versus smooth), different locations on the plant or different phenologies. Our results suggest that enemy impact has not influenced the diversity of this gall community. Gall wall thickness, phenology, location on the plant and surface structure do not appear to influence the distribution of parasitoid species. Other explanations are offered to account for diversity in gall morphology among these species.  相似文献   

12.
More than 300 unopened leaf galls formed by the pemphigine aphid Pemphigus matsumurai on Populus maximowiczii were collected at Nakasatsunai, Hokkaido, Japan, in July and September 2007 and kept in cold conditions during winter. From mummified fundatrices in the galls an aphidiine parasitoid Monoctonia vesicarii and three species of hyperparasitoids belonging to Pteromalidae, Eupelmidae and Eulophidae emerged from March to May 2008. Monoctonia vesicarii, which is new to Japan, is redescribed. The eulophid hyperparasitoid is described as a new species, Aprostocetus (Aprostocetus) doronokianus, and the pteromalid and eupelmid hyperparasitoids are identified as Pachyneuron sp. and Eupelmus sp., respectively. Approximately 180 unopened mummies of P. matsumurai were dissected in August and November 2008 and a living larva of M. vesicarii was found in each of 17 of them. These observations suggest that some individuals of M. vesicarii pass through two‐year cycles. The implications of the three species of hyperparasitoids to P. matsumurai galls are discussed.  相似文献   

13.
Torymus koreanus (Hymenoptera: Torymidae) was reared from galls of Dryocosmus kuriphilus (Hymenoptera: Cynipidae) for the first time in Japan. We here report morphological features and partial mtDNA sequencing data of T. koreanus. Torymus koreanus has several common characteristics with species of the cyaneus group defined by Zavada (2003 ). According to the key to species groups defined by Graham and Gijswijt (1998 ), it does not belong to any species group because of the entire posterior margin of metasomal tergum five.  相似文献   

14.
A gall midge that induces thick lenticular galls on leaflets of Pueraria species (Fabaceae) in Japan, mainland China, Taiwan and South Korea is described as Pitydiplosis puerariae sp. nov. (Diptera: Cecidomyiidae). Tanaostigmodes puerariae (Hymenoptera: Tanaostigmatidae), described earlier from mainland China as an inducer of the lenticular gall, is regarded to be an inquiline. Pitydiplosis puerariae is distinguishable from the only known congener, the Nearctic Pitydiplosis packardi, by the male genitalia with entire aedeagus and with hypoproct that is as long as cerci and bilobed with a U‐shaped emargination. DNA sequencing data indicate the existence of three genetically different intraspecific groups: (i) “YNT‐montana group” induces galls on Pueraria montana on the Yaeyama Islands, Japan and in northern Taiwan; (ii) “CT‐montana group” on P. montana in central Taiwan; (iii) and “JCK‐lobata group” on Pueraria lobata in mainland China, South Korea and Japan north of Okinoerabu Island. A possible diversification scenario of the three groups is hypothesized based on DNA sequencing data and geohistorical information. A distribution gap of the gall midge on five islands between Tokunoshima and Ishigaki Islands, Japan was confirmed by intensive field surveys. Ecological traits and adult behavior of Pity. puerariae are also described. Its possibility as a potential biological control agent against P. lobata seems counter‐indicated.  相似文献   

15.
Some species of the aphid genus Nipponaphis (Nipponaphidini) form green, globular or fig‐shaped galls on the evergreen Distylium racemosum, their primary host. Molecular phylogenetic analyses of aphid samples collected from both their galls and secondary hosts indicated the occurrence of four species in Japan: N. distychii, N. distyliicola, N. loochooensis and N. machilicola. The four species could also be discriminated from one another in morphology. The name N. litseae turned out to be a junior synonym of N. distychii. Galls formed by N. machilicola are reported for the first time in this paper. The life cycles of the four species are briefly reviewed.  相似文献   

16.
In 2001, subconical galls were found on the leaves of an alien Artemisia species (Asteraceae) in Ibusuki City, Kagoshima Prefecture, Japan. These galls were quite similar to those induced by Rhopalomyia yomogicola (Diptera: Cecidomyiidae) on Artemisia princeps, Artemisia montana, and Artemisia japonica in Japan. The morphological features of the pupal head and molecular sequencing data indicated that the gall midge from the alien Artemisia was identical to R. yomogicola. Usually, galling insects do not expand readily their host range to alien plants, but R. yomogicola is considered to have expanded its host range to the alien Artemisia by its multivoltine life history trait and oligophagous habit across two different botanical sections of the genus Artemisia. Adult abdominal tergites and sternites and immature stages of R. yomogicola are described for the first time and detailed biological information is presented.  相似文献   

17.
We investigated the association between a gall midge, Illiciomyia yukawai, and its symbiotic fungi on Japanese star anise, Illicium anisatum. The number of fungal species isolated from the galls increased with development of the galls, whereas those from the leaves showed a different trend. Botryosphaeria dothidea was dominant in the galls from June to October, and after that Phomopsis sp. 1, Colletotrichum sp., and Pestalotiopsis sp. became dominant. Although B. dothidea was not isolated from the leaves, it was detected from mycangia (abdominal sternite VII) of egg-laying adults at a high isolation frequency (>90%). However, B. dothidea was not isolated from mycangia of adults emerging from galls that were enclosed by plastic bags. This indicates that I. yukawai is closely associated with B. dothidea and that its newly emerged adults do not take the fungus into mycangia directly from the galls where they had developed. Also, the fungus from the fungal layers of ambrosia galls has less ability to propagate on artificial media despite the presence of its mycelial mass in mature galls.  相似文献   

18.
Abstract.
  • 1 Rapid and substantial changes have occurred in the parasitoid and inquiline community associated with the agamic galls of Andricus quercuscalicis since it invaded Britain in the late 1950s. The number of parasitoid and inquiline species has risen from one to thirteen over a 15-year period. Although the number of species has been relatively consistent over the last 8 years, the species composition has changed considerably and in a highly characteristic way during this period.
  • 2 The parasitoid complex can be divided into two broadly distinct sets of parasitoid species; one set attacks only the gall former whereas the other set concentrates on the inquilines living in the wall of the gall.
  • 3 The most dramatic change, however, is in the abundance of inquilines which were reported to be virtually absent in earlier studies on this community in Britain. Over a period of only 5 years, between 1988 and 1993, inquiline attack rose from less than 0.01 to an average of 0.26 inquilines per gall. The intensity of inquiline attack is geographically heterogenous, with high inquiline numbers restricted to south-east England. Because of the relatively high specificity of the parasitoids, high inquiline abundance is positively correlated with parasitoid species richness in knopper galls.
  • 4 Parasitism rates, particularly on the gall former, were generally low (<10%). Over the last 5 years, however, seven parasitoid species have been consistently recorded and the mortality caused by these species has increased continuously. The species composition of the community associated with this alien gall wasp in Britain has quickly converged to the community known from its native range in continental Europe. Parasitoid species known to attack the galls of A.quercuscalisis on the continent have been recorded from it in Britain for the first time mainly in areas where inquilines have recently become abundant.
  • 5 Since rates of parasitism of the gall former are still low, parasitoids are unlikely to play a major role in the population dynamics of this invading gall wasp at present, but the rapidly increasing inquiline and parasitoid attack could be a source of increased mortality for native cynipid species which are the alternative hosts of those parasitoid species.
  相似文献   

19.
The life cycle and developmental stages of Aylax hypecoi (Trotter, 1913, Hymenoptera: Cynipidae: Aylacini) were studied in detail. Aylax hypecoi is known to induce galls in fruits of two Hypecoum species — H. imberbe and H. geslini (Papaveraceae) and the larva develops in host plant fruits. The morphology and development of egg, larva and pupa were investigated, which has previously not been done. The shape and size of terminal-instar larvae and associated galls are sex-specific. Overwintering stage, adult emergence and flying periods, and egg productivity were studied also.  相似文献   

20.
In 2005, Quadrastichus erythrinae Kim, 2004 (Hymenoptera: Eulophidae), which induces stem, petiole, and leaf galls on Erythrina variegata L. (Fabaceae), was found on the following six islands in Okinawa Prefecture, Japan: Okinawa, Kume, Miyako, Ishigaki, Iriomote, and Hateruma. Galls were also found in Vietnam. In Japan, no further infestation records have been reported from any of Japan's other south‐western prefectures where Erythrina species grow. Because no Erythrina galls were observed in Okinawa Prefecture before 2005, Q. erythrinae seems to have invaded quite recently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号