首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Cell injury from hyperoxia is associated with increased formation of superoxide radicals (O2-). One potential source for O2- radicals is the reduction of molecular O2 catalyzed by xanthine oxidase (XO). Physiologically, this reaction occurs at a relatively low rate, because the native form of the enzyme is xanthine dehydrogenase (XD) which produces NADH instead of O2-. Reports of accelerated conversion of XD to XO, and increased formation of O2- formation in ischemia-reperfusion injury, led us to examine whether hyperoxia, which is known to increase O2- radical formation, is associated with increased lung XO activity, and accelerated conversion of XD to XO. We exposed 3-month-old rats either to greater than 98% O2 or room air. After 48 h, we sacrificed the rats and measured XD and XO activities and uric acid contents of the lungs. We also measured the activities of the two enzymes in the heart as a control organ. We found that the activity of XD was not altered significantly by hyperoxia in rat lungs or hearts, but XO activity was markedly lower in the lung, whether expressed per whole organ or per milligram protein, and remained unchanged in the heart. Lung uric acid content was also significantly lower with hyperoxia. The decrease in lung XO activity may reflect inactivation of the enzyme by reactive O2 metabolites, possibly as a negative feedback mechanism. The concomitant decrease in uric acid content suggests either decreased production mediated by XO due to its inactivation or greater utilization of uric acid as an antioxidant. We examined these postulates in vitro using a xanthine/xanthine oxidase system and found that H2O2, but not uric acid, has an inhibitory effect on O2- formation in the system. We therefore conclude that hyperoxia is not associated with increased conversion of XD to XO, and that the exact contribution of XO to hyperoxic lung injury in vivo remains unclear.  相似文献   

2.
The xanthine oxidoreductase (XOD) system, which consists of xanthine dehydrogenase (XDH) and xanthine oxidase (XO), is one of the major sources of free radicals in biological systems. The XOD system is present predominantly in the normal tissues as XDH. In damaged tissues, XDH is converted into XO, the form that generates free radicals. Therefore, the XO form of the XOD system is expected to be found mainly in radiolytically damaged tissue. In this case, XO may catalyze the generation of free radicals and potentiate the effect of radiation. Inhibition of the XOD system is likely to attenuate the detrimental effects of ionizing radiation. We have examined this possibility using allopurinol and folic acid, which are known inhibitors of the XOD system. Swiss albino mice (7-8 weeks old) were given single doses of allopurinol and folic acid (12.5-50 mg/kg) intraperitoneally and irradiated with different doses of gamma radiation at a dose rate of 0.023 Gy/s. The XO and XDH activities as well as peroxidative damage and lactate dehydrogenase (LDH) were determined in the liver. An enhancement of the activity of XO and a simultaneous decrease in the activity of XDH were observed at doses above 3 Gy. The decrease in the ratio XDH/XO and the unchanged total activity (XDH + XO) suggested the conversion of XDH into XO. The enhanced activity of XO may potentiate radiation damage. The increased levels of peroxidative damage and the specific activity of LDH in the livers of irradiated mice supported this possibility. Allopurinol and folic acid inhibited the activities of XDH and XO, decreased their ratio (XDH/XO), and lowered the levels of peroxidative damage and the specific activity of LDH. These results suggested that allopurinol and folic acid have the ability to inhibit the radiation-induced changes in the activities of XDH and XO and to attenuate the detrimental effect of this conversion, as is evident from the diminished levels of peroxidative damage and the decreased activity of LDH.  相似文献   

3.
The xanthine oxidoreductase system is one of the major sources of free radicals in many pathophysiological conditions. Since ionizing radiations cause cell damage and death, the xanthine oxidoreductase system may contribute to the detrimental effects in irradiated systems. Therefore, modulation of the xanthine oxidoreductase system by radiation has been examined in the present study. Female Swiss albino mice (7-8 weeks old) were irradiated with gamma rays (1-9 Gy) at a dose rate of 0.023 Gy s(-1) and the specific activities of xanthine oxidase (XO) and xanthine dehydrogenase (XDH) were determined in the liver of the animals. The mode and magnitude of change in the specific activities of XO and XDH were found to depend on radiation dose. At doses above 3 Gy, the specific activity of XO increased rapidly and continued to increase with increasing dose. However, the specific activity of XDH was decreased. These findings are suggestive of an inverse relationship between the activity of XO and XDH. The ratio of the activity of XDH to that of XO decreased with radiation dose. However, the total activity (XDH + XO) remained constant at all doses. These results indicate that XDH may be converted into XO. An intermediate form, D/O, appears to be transient in the process of conversion. The enhanced specific activity of XO may cause oxidative stress that contributes to the radiation damage and its persistence in the postirradiation period. Radiation-induced peroxidative damage determined in terms of the formation of TBARS and the change in the specific activity of lactate dehydrogenase support this possibility.  相似文献   

4.
Xanthine oxidase (XO)-generated toxic O2 metabolites appear to contribute to reperfusion injury, but the possibility that XO is involved in hyperoxic or neutrophil elastase-mediated injury has not been investigated. We found that lungs isolated from rats fed a tungsten-rich diet had negligible XO activities and after exposure to hyperoxia developed less acute edematous injury during perfusion with buffer or purified neutrophil elastase than XO-replete lungs from control rats which had been exposed to hyperoxia. In parallel, tungsten-treated XO-depleted cultured bovine pulmonary arterial endothelial cells made less superoxide anion and as monolayers leaked less 125I-labeled albumin after exposure to neutrophil elastase than XO-replete endothelial cell monolayers. Our findings suggest that XO-derived O2 metabolites contribute to acute edematous lung injury from hyperoxia directly and by enhancing susceptibility to neutrophil elastase.  相似文献   

5.
The widely distributed xanthine oxidoreductase (XOR) system has been shown to be modulated upon exposure of animals to ionizing radiation through the conversion of xanthine dehydrogenase (XDH) into xanthine oxidase (XO). In the present work, radiomodification of the XOR system by phenylmethylsulfonyl fluoride (PMSF) and dithiothreitol (DTT) was examined using female Swiss albino mice which were irradiated with gamma rays at a dose rate 0.023 Gy s(-1). PMSF, a serine protease inhibitor, and DTT, the sulfhydryl reagent, were administered intraperitoneally prior to irradiation. The specific activities of XDH and XO as well as the XDH/XO ratio and the total activity (XDH+XO) were determined in the liver of the mice. The inhibition of XO activity, restoration of XDH activity, and increase in the XDH/XO ratio upon administration of PMSF were suggestive of irreversible conversion of XDH into XO mediated through serine proteases. The biochemical events required for the conversion were probably initiated during the early phase of irradiation, as the treatment with PMSF immediately after irradiation did not have a modulatory effect. Interestingly, DTT was not effective in modulating radiation-induced changes in the XOR system or oxidative damage in the liver of mice. The DTT treatment resulted in inhibition of the release of lactate dehydrogenase. However, the protection appears to be unrelated to the formation of TBARS. On the other hand, the presence of PMSF during irradiation inhibited radiation-induced oxidative damage and radiation-induced increases in the specific activity of lactate dehydrogenase. These findings suggest that a major effect of ionizing radiation is irreversible conversion of xanthine to xanthine oxidase.  相似文献   

6.
Endothelial cells are critical targets in both hypoxia-and reoxygenation-mediated lung injury. Reactive O2 species (ROS) have been implicated in the pathogenesis of hypoxic and reoxygenation lung injury, and xanthine dehydrogenase/oxidase (XDH/XO) is a major generator of the ROS. Porcine pulmonary artery endothelial cells (PAEC) have no detectable XDH/XO. This study was undertaken to examine (1) ROS production by hypoxic porcine PAEC and their mitochondria and (2) ROS production and injury in reoxygenated PAEC lacking XDH/XO activity. Intracellular H2O2 generation and extracellular H2O2 and O/2 release were measured after exposure to normoxia (room air-5% CO2), hypoxia (0% O2 -95% N-5% CO2), or hypoxia followed by normoxia or hyperoxia (95% O2-5% CO2). Exposure to hypoxia results in significant reductions in intracellular H2 O2 formation and extracellular release of H2 O2 and O2 by PAEC and mitochondria. The reductions occur with as little as a 2 h exposure and progress with continued exposure. During reoxygenation, cytotoxicity was not observed, and the production of ROS by PAEC and their mitochondria never exceeded levels observed in normoxic cells. The absence of XDH/XO may prevent porcine PAEC from developing injury and increased ROS production during reoxygenation. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Phosphorylation of xanthine dehydrogenase/oxidase in hypoxia   总被引:4,自引:0,他引:4  
The enzyme xanthine oxidase (XO) has been implicated in the pathogenesis of several disease processes, such as ischemia-reperfusion injury, because of its ability to generate reactive oxygen species. The expression of XO and its precursor xanthine dehydrogenase (XDH) is regulated at pre- and posttranslational levels by agents such as lipopolysaccharide and hypoxia. Posttranslational modification of the protein, for example through thiol oxidation or proteolysis, has been shown to be important in converting XDH to XO. The possibility of posttranslational modification of XDH/XO through phosphorylation has not been adequately investigated in mammalian cells, and studies have reported conflicting results. The present report demonstrates that XDH/XO is phosphorylated in rat pulmonary microvascular endothelial cells (RPMEC) and that phosphorylation is greatly increased ( approximately 50-fold) in response to acute hypoxia (4 h). XDH/XO phosphorylation appears to be mediated, at least in part, by casein kinase II and p38 kinase as inhibitors of these kinases partially prevent XDH/XO phosphorylation. In addition, the results indicate that p38 kinase, a stress-activated kinase, becomes activated in response to hypoxia (an approximately 4-fold increase after 1 h of exposure of RPMEC to hypoxia) further supporting a role for this kinase in hypoxia-stimulated XDH/XO phosphorylation. Finally, hypoxia-induced XDH/XO phosphorylation is accompanied by a 2-fold increase in XDH/XO activity, which is prevented by inhibitors of phosphorylation. In summary, this study shows that XDH/XO is phosphorylated in hypoxic RPMEC through a mechanism involving p38 kinase and casein kinase II and that phosphorylation is necessary for hypoxia-induced enzymatic activation.  相似文献   

8.
Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.  相似文献   

9.
Milk xanthine oxidase (XO) has been prepared in a dehydrogenase form (XDH) by purifying the enzyme in the presence of 2.5 mM dithiothreitol. Unlike XO, which reacts rapidly only with oxygen and not with NAD, the XDH form of the enzyme reacts rapidly with NAD. XDH has a turnover number for the NAD-dependent conversion of xanthine to urate of 380 mol/min/mol at pH 7.5, 25 degrees C, with a Km = < or = 1 microM for xanthine and a Km = 7 microM for NAD, but has very little O2-dependent activity. There is evidence that the two forms of the enzyme have different flavin environments: XDH stabilizes the neutral form of the flavin semiquinone and XO does not. Further, XDH binds the artificial flavin 8-mercapto-FAD in its neutral form, shifting the pK of this flavin by 5 pH units, while XO binds 8-mercapto-FAD in its benzoquinoid anionic form. XDH can be converted back to the XO form by the addition of three to four equivalents of the disulfide-forming reagent 4,4'-dithiodipyridine, suggesting that, in the XDH form of the enzyme, disulfide bonds are broken; this may cause a conformational change which creates a binding site for NAD and changes the protein structure near the flavin.  相似文献   

10.
Xanthine oxidase (XO) and xanthine dehydrogenase (XDH) were inactivated by incubation with nitric oxide under anaerobic conditions in the presence of xanthine or allopurinol. The inactivation was not pronounced in the absence of an electron donor, indicating that only the reduced enzyme form was inactivated by nitric oxide. The second-order rate constant of the reaction between reduced XO and nitric oxide was determined to be 14.8 +/- 1.4 M-1 s-1 at 25 degrees C. The inactivated enzymes lacked xanthine-dichlorophenolindophenol activity, and the oxypurinol-bound form of XO was partly protected from the inactivation. The absorption spectrum of the inactivated enzyme was not markedly different from that of the normal enzyme. The flavin and iron-sulfur centers of inactivated XO were reduced by dithionite and reoxidized readily with oxygen, and inactivated XDH retained electron transfer activities from NADH to electron acceptors, consistent with the conclusion that the flavin and iron-sulfur centers of the inactivated enzyme both remained intact. Inactivated XO reduced with 6-methylpurine showed no "very rapid" spectra, indicating that the molybdopterin moiety was damaged. Furthermore, inactivated XO reduced by dithionite showed the same slow Mo(V) spectrum as that derived from the desulfo-type enzyme. On the other hand, inactivated XO reduced by dithionite exhibited the same signals for iron-sulfur centers as the normal enzyme. Inactivated XO recovered its activity in the presence of a sulfide-generating system. It is concluded that nitric oxide reacts with an essential sulfur of the reduced molybdenum center of XO and XDH to produce desulfo-type inactive enzymes.  相似文献   

11.
Studies have been made on the possible involvement of malondialdehyde (MDA) and (E)-4-hydroxynon-2-enal (HNE), two terminal compounds of lipid peroxidation, in modifying xanthine oxidoreductase activity through interaction with the oxidase (XO) and/or dehydrogenase (XDH) forms. The effect of the two aldehydes on XO (reversible, XO(rev), and irreversible, XO(irr)) and XDH was studied using xanthine oxidase from milk and xanthine oxidoreductase partially purified from rat liver. The incubation of milk xanthine oxidase with these aldehydes resulted in the inactivation of the enzyme following pseudo-first-order kinetics: enzyme activity was completely abolished by MDA (0.5-4 mM), while residual activity (5% of the starting value) associated with an XO(irr) form was always observed when the enzyme was incubated in the presence of HNE (0.5-4 mM). The addition of glutathione to the incubation mixtures prevented enzyme inactivation by HNE. The study on the xanthine oxidoreductase partially purified from rat liver showed that MDA decreases the total enzyme activity, acting only with the XO forms. On the contrary HNE leaves the same level of total activity but causes the conversion of XDH into an XO(irr) form.  相似文献   

12.
Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase   总被引:10,自引:0,他引:10  
Xanthine oxidase (XO) was shown to catalyze the reduction of nitrite to nitric oxide (NO), under anaerobic conditions, in the presence of either NADH or xanthine as reducing substrate. NO production was directly demonstrated by ozone chemiluminescence and showed stoichiometry of approximately 2:1 versus NADH depletion. With xanthine as reducing substrate, the kinetics of NO production were complicated by enzyme inactivation, resulting from NO-induced conversion of XO to its relatively inactive desulfo-form. Steady-state kinetic parameters were determined spectrophotometrically for urate production and NADH oxidation catalyzed by XO and xanthine dehydrogenase in the presence of nitrite under anaerobic conditions. pH optima for anaerobic NO production catalyzed by XO in the presence of nitrite were 7.0 for NADH and 相似文献   

13.
Xanthine oxidase (XO) and xanthine dehydrogenase (XD) activities decreased in lungs isolated from rats and cultured lung endothelial cells that had been exposed to hyperoxia. Purified XO activity also decreased after addition of a variety of chemically generated O2 metabolite species (superoxide anion, hydrogen peroxide, hydroxyl radical, or hypochlorous acid), hypoxanthine, or stimulated neutrophils in vitro. XO inactivation by chemically, self-, or neutrophil-generated O2 metabolites was decreased by simultaneous addition of various O2 metabolite scavengers but not their inactive analogues. Since XO appears to contribute to a variety of biological processes and diseases, hyperoxia- or O2 metabolite-mediated decreases in XO activity may be an important cellular control mechanism.  相似文献   

14.
RT-PCR扩增猕猴黄嘌呤脱氢酶/氧化酶(XDH/XO)基因片段,为进一步开展相关研究提供实验资料。方法提取猕猴新鲜肝脏组织总RNA,用RT-PCR二步法进行XDH/XO基因片段扩增,对获得的目的片段进行序列测定,与GenBank上发表的人类(Homosapiens)、小鼠(Musmusculus)、家鼠(Rattusnorvegicus)、野猪(Susscrofa)等物种XDH/XO基因进行该序列同源性比对分析,DNAMAN软件预测该段核苷酸的氨基酸序列,Inter-ProScan及SWISS-MODEL工具进行XDH/XO的编码蛋白结构域及功能预测及三维结构构建。结果RT-PCR产物电泳检测得到了与设计大小相一致的目的条带,序列测定共测到683个核苷酸,DNAMAN软件预测该段核苷酸的氨基酸序列包括了1个编码53个氨基酸的开放阅读框(ORF),通过该软件包中Multiplealignment对目的基因片段的核苷酸序列与NCBI报道的人类、小鼠、家鼠、野猪XDH/XO基因mRNA互补的cDNA核苷酸序列同源性进行同源性比较分析,结果显示所扩增得到的目的片段与人类同源性最高,为95.6%,与小鼠、家鼠、野猪的同源性分别为85.2%、84.3%、86.1%,说明获得的基因片段是猕猴的XDH/XO基因片段,且该基因在物种间具有较高的相似性。生物信息学预测该段XDH/XO编码蛋白含有醛氧化/脱氢酶的钼喋呤结合点结构域及黄嘌呤脱氢酶结构域。结论在体外成功扩增出猕猴XDH/XO基因片段,为进一步开展高尿酸血症致病机理研究,抗高尿酸血症新药研发奠定工作基础。  相似文献   

15.
Xanthine oxidase (XO) and total oxidase plus dehydrogenase (XO+XDH) activities from rat liver were measured in the presence or absence of adenine in extracts prepared with or without DTT/PMSF in homogenization buffer. Presence of adenine in extracts, prepared with or without DTT/PMSF, caused a 45-60% decrease in XO and XO+XDH activities. Removal of adenine by dialysis from extracts prepared with or without DTT/PMSF resulted in the recovery of XO and XO+XDH activities to almost their pre-dialysis control levels. Enzyme activity after 24hr storage at -20 degrees C depended on the presence or absence of DTT/PMSF and adenine, with both XO and XO+XDH activities being lower in extracts with the combined presence of DTT/PMSF and adenine. Incubation of extracts at 37 degrees C for 30 minutes resulted in increased XO and XO+XDH activities, however, adenine-treated samples did not differ from their pre-incubation activities. The molecular mass of the enzyme from control and adenine-treated extracts was unchanged (300 kDa). Adenine-treated extracts prepared with or without DTT/PMSF showed higher D/O ratios in all post-dialysis samples when compared with their pre-dialysis ratios. The results suggest that adenine may play a role in preventing the dehydrogenase to oxidase conversion during extract preparation, storage, overnight dialysis and heat treatment.  相似文献   

16.
The effect of an alkylating agent, N-ethylmaleimide (NEM), on the activities of xanthine oxidase (XO) and xanthine dehydrogenase (XD) in the presence and absence of Cu2+ or trypsin in the cytosolic fraction from rabbit liver was examined. At concentrations ranging from 0.25 to 2.0 microM, allopurinol, which is generally considered to be a XO inhibitor, suppressed the XD activity (41.5-93.4% inhibition) in addition to the XO activity (28.6-88.4% inhibition) under basal conditions, without the addition of Cu2+ or trypsin. In contrast, NEM (100-400 microM) inhibited the XO activity (35.7-85.7% inhibition) without affecting the XD activity. Also, NEM inhibited the Cu2+- and trypsin-induced XO activities, but did not affect the XD activity at the same concentration range. These results demonstrate that NEM can be a selective inhibitor of XO activity in rabbit liver.  相似文献   

17.
The present study tested the hypothesis that calpain is responsible for the limited proteolytic conversion of xanthine dehydrogenase (XD) to xanthine oxidase (XO). We compared the effects of various proteases on the activity and molecular weight of a purified preparation of xanthine dehydrogenase from rat liver. In agreement with previous reports, trypsin treatment produced a complete conversion of XD to XO accompanied by a limited proteolysis of XDH from an Mr of 140 kD to an Mr of 90 kD. Treatment with calpain I or calpain II did not produce a conversion from XD to XO nor did it result in partial proteolysis of the enzyme. Similarly, trypsin treatment partially degraded a reversibly oxidized form of xanthine dehydrogenase while calpain I or calpain II were ineffective. The possibility that an endogenous inhibitor prevented the proteolysis of XDH by calpain I or II was excluded by verifying that brain spectrin, a known calpain substrate, was degraded under the same incubation conditions. The results indicate that calpain is not likely to be responsible for the in vivo conversion of XD to XO under pathological conditions.  相似文献   

18.
Xanthine dehydrogenase (XDH), a complex molybdo/iron-sulfur/flavoprotein, catalyzes the oxidation of hypoxanthine to xanthine followed by oxidation of xanthine to uric acid with concomitant reduction of NAD+. The 2.7 A resolution structure of Rhodobacter capsulatus XDH reveals that the bacterial and bovine XDH have highly similar folds despite differences in subunit composition. The NAD+ binding pocket of the bacterial XDH resembles that of the dehydrogenase form of the bovine enzyme rather than that of the oxidase form, which reduces O(2) instead of NAD+. The drug allopurinol is used to treat XDH-catalyzed uric acid build-up occurring in gout or during cancer chemotherapy. As a hypoxanthine analog, it is oxidized to alloxanthine, which cannot be further oxidized but acts as a tight binding inhibitor of XDH. The 3.0 A resolution structure of the XDH-alloxanthine complex shows direct coordination of alloxanthine to the molybdenum via a nitrogen atom. These results provide a starting point for the rational design of new XDH inhibitors.  相似文献   

19.
It has been established that papaverine as well as other xenobiotics (dexamethasone and nitrosodimethylamine) [figure: see text] provoked the thymocyte death like apoptosis. The increase of the quantity of double-strand, single-strand DNA breaks and low molecular weight fragments of DNA preceded cell death. In papaverine-induced process of thymocyte apoptosis the total activity of xanthine oxidase in thymocytes strongly elevated long before their death, the conversion of xanthine dehydrogenase (D-form) to xanthinoxidase (O-form) and accumulation of O-form in the cultural medium took place. Direct stimulating effect of papaverine on O-form of enzyme in thymocyte lysate was revealed. The used digitonin thymocytes were divided into cytoplasmic and structural component fractions. It was shown that about 80% of total xanthinoxidase activity was concentrated in cytoplasma while only 20% of its activity was found in structural components. More higher ratio of xanthinoxidase/xanthindehydrogenase (XO/XDH) was observed and papaverine-induced changes of these enzyme forms activities were expressed more brightly in the structural components, than in the thymocyte cytoplasma. During the process of developing thymocytes apoptosis caused by papaverine the reaction of lipid peroxidation was intensified. XO-hypoxanthin system displaying prooxidant influence on cells increased the cytotoxic effect of papaverine but the presence of allopurinol or catalase and superoxidedismutase decreased it. Besides, cytotoxic action on thymocytes of allopurinol itself as well as hypoxanthin itself was revealed.  相似文献   

20.
The generation of oxidants in reperfused ischemic tissues by xanthine oxidase (XO) may contribute to tissue damage. We exposed bovine pulmonary microvascular endothelial (BPMVE) cells to hypoxia and subsequent reoxygenation and examined alterations in intracellular and extracellular XO activities. BPMVE cells incubated 24 h under hypoxic conditions (less than 1% O2) showed a twofold increase in intracellular xanthine dehydrogenase activity and a smaller increase in intracellular XO activity compared to normoxic BPMVE. Both normoxic and hypoxic BPMVE cells constitutively released XO activity into their culture media. Incubation of hypoxic or normoxic BPMVE cells with oxygenated medium (95% O2) stimulated the release of XO activity into the extracellular medium within 5 min. The XO activity could not be detected in the oxygenated medium after 60 min incubation with 95% O2. These results indicate that endothelial cells in culture constitutively release XO and that oxygenation rapidly enhances XO release. The released XO activity may play an important role in generation of oxidants in the extracellular milieu during reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号