首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
观察北方山溪鲵(Batrachuperus tibetanus)精巢生精小叶和间质区在繁殖周期的显微结构,并测量了生精小叶的直径、生精小叶和间质区的体密度。结果显示,在精子排空期,精巢中排空区内间质细胞最发达,体密度达到最大值。在精子形成期和成熟期,间质区体密度比增殖期和成熟分裂期明显增大。说明间质区体密度的增大与精子形成以及繁殖活动密切相关,排空小叶中的支持细胞可能对间质区的间质细胞发育起重要作用。  相似文献   

2.
卵胎生硬骨鱼褐菖(鱼良)鲉精巢的周期发育   总被引:10,自引:2,他引:8  
研究了卵胎生硬骨鱼褐菖(鱼良)鲉(Sebastiscus marmoratus)的精巢结构和生殖周期.褐菖(鱼良)鲉精巢属于小叶型.每年8~9月,精巢处于精原细胞增殖期.初级精原细胞分裂增殖,产生次级精原细胞.后者和支持细胞组成精小囊.10月~翌年1月进入精子发生期.精小囊中的生殖细胞进一步发育,逐渐形成精子.2~7月是精子退化吸收期,精巢中仅有初级精原细胞和残余的精子.在生殖季节,精子经由输出管和输精管运至尿殖突,通过体内受精方式送入雌鱼生殖道.  相似文献   

3.
卵胎生硬骨鱼褐菖You精巢的周期发育   总被引:3,自引:0,他引:3  
研究了卵胎生硬骨鱼褐菖You(Sebastiscus marmordtus)的精巢结构和生殖周期。褐菖You精巢属于小叶型。每年8~9月,精巢处于精原细胞增殖期。初级精原细胞分裂增殖,产生次级精原细胞。后者和支持细胞组成精小囊。10月~翌年、月进入精子发生期。精小囊中的生殖细胞进一步发育,逐渐形成精子。2~7月是精子退化吸收期,精巢中仅有初级精原细胞和残余的精子。在生殖季节,精子经由输出管和输精管  相似文献   

4.
用光镜和电镜观察了北方山溪鲵(Batrachuperus tibetanus)精子发生过程中各种类型生精细胞的显微与超微结构变化。结果显示,北方山溪鲵在4~8月时处于精子发生期,精子形成在7~8月。成熟精子的结构具有小鲵科精子的一些共同特征,如顶体前端呈三叶草状,尾部由轴纤维、波动膜、轴丝及轴丝旁纤维构成,轴纤维粗大呈圆柱形,尾部无线粒体等。比较分析认为,在两栖类的系统发育中,轴纤维、波动膜和轴丝旁纤维的消失为近裔性状。  相似文献   

5.
秦岭北坡中国林蛙精巢显微结构的年周期变化   总被引:6,自引:0,他引:6  
用光镜观察了秦岭北坡中国林蛙(Ranachensinensis)精巢显微结构的年周期变化,结合精巢系数的变化探讨其生殖规律。结果显示,秦岭北坡中国林蛙的生精周期属于非连续型。精巢系数的变化与精子发生的活动周期相一致。精子发生从每年5月开始,翌年4月结束,历时1年。生精周期可划分为5个时期。Ⅰ期,精原细胞增殖期,5~7月,精巢系数最小,精原细胞进行有丝分裂;Ⅱ期,精母细胞成熟分裂期,8~9月,精巢系数最大,精原细胞、精母细胞和精子细胞在生精小管内共存;Ⅲ期,精子形成期,9~1 0月,精子细胞变态形成精子;Ⅳ期,成熟精子贮存越冬期,1 1月至翌年2月,成熟精子贮存在生精小管中;V期,精子排放期,翌年3~5月,精巢系数显著下降,成熟精子从生精小管脱离,通过输精管道排出体外。  相似文献   

6.
c-fos和c-myc在北方山溪鲵精子发生中的表达   总被引:1,自引:0,他引:1  
用免疫组织化学方法检测原癌基因cf-os和c-myc蛋白在北方山溪鲵(Batrachuperus tibetanus)精子发生中的表达定位。结果显示,在精原细胞缓慢增殖期,8、9月,FOS阳性反应物出现在精原细胞的胞质及核膜外,10、11月,FOS在少量精原细胞的胞核中表达。在精原细胞快速增殖期,即翌年4月,FOS定位在精原细胞的胞质中;5月,FOS在大量的胞核中强阳性表达;6月,FOS定位于部分精母细胞核质和核膜下;7月,FOS在一些精子细胞的核质和核膜下表达。MYC在8、9月的部分精原细胞胞质中表达较弱,在101、1月阳性反应出现在个别精原细胞的核质中。翌年4月,MYC在精原细胞核周围的胞质中表达;5月在大量的精原细胞核膜下有强表达;6月,MYC在一些精母细胞核膜下表达;7月,MYC在部分精子细胞的核膜下弱表达。结果表明,北方山溪鲵的原癌基因cf-os和c-myc表达大强度在生精细胞发育中呈阶段性,表达的强度和细胞数量与细胞增殖的速度相一致。FOS和MYC在精原细胞内从胞质向胞核的转移与细胞快速增殖的时期相吻合。说明cf-os和c-myc对精原细胞有丝分裂有促进作用,并参与精母细胞成熟分裂的调控。  相似文献   

7.
应用光学显微镜对唐鱼Tanichthys albonubes精巢的组织结构进行了观察.结果表明,唐鱼的精巢属于小叶型结构.性成熟唐鱼的精巢呈乳白色,长条状,左右各一,合并成“Y”型.小叶间质把精巢分成许多精小叶,每个精小叶由数个精小囊组成,精子就在精小囊中形成.同一精小叶内的精小囊不一定同步发育,但同一精小囊中的生精细胞发育是同步的.唐鱼的精子发生和形成过程经历了初级精原细胞、次级精原细胞、初级精母细胞、次级精母细胞、精子细胞和成熟精子6个阶段.精巢内同时存在初级精原细胞和次级精原细胞两种类型的精原细胞.  相似文献   

8.
黑脊倒刺鲃精巢结构和精子发生的研究   总被引:9,自引:0,他引:9  
用光学显微镜和电子显微镜研究了黑脊倒刺鲃精巢的组织结构和精子发生过程。精巢属于小叶型,由精小叶、小叶间质、壶腹腔和输出管构成。精小叶由各期生精细胞和支持细胞构成。除初级精原细胞以外的各期生精细胞和支持细胞组成了精小囊。每一精小囊中的生精细胞发育同步。成熟的精子从精小囊中释放出来,进入小叶腔中。在精巢的腹侧,小叶腔与壶腹腔连接。在壶腹腔的外侧,有一条与壶腹腔平行的输出管。壶腹腔与输出管相通。在壶腹腔和输出管中都充满精子。精巢的后端与贮精囊相连。贮精囊中充满形状不规则的腔隙。腔隙中有精子分布。输出管从精巢延伸出来,进入贮精囊中,位于贮精囊的一侧。左右两个贮精囊通向一条共同的输精管。输精管上皮具有分泌功能。精子发生在精小叶中进行。精子发生经历了初级精原细胞、次级精原细胞、初级精母细胞、次级精母细胞和精子细胞阶段。精子细胞经过精子形成过程,形成精子。  相似文献   

9.
粗糙沼虾精巢发育的组织学   总被引:1,自引:1,他引:0  
利用光镜技术,对粗糙沼虾精巢发育进行了研究,根据精子发生过程中每种生殖细胞所占的比例和发生的次序,并结合精巢的形态特征,把精巢发育过程分为五个时期,即精原细胞期,精母细胞期,精细胞期,成熟精子期及退化期,精原细胞期,精巢小,透明乳白色,生精小管内的生殖细胞以精原细胞为主;精母细胞期;精巢体积增大,半透明乳白色,主要由处于初级精母细胞的次级精母细胞阶段的生殖细胞组成;精细胞期,精巢体积继续增大,颜色加深,生精小管内的生殖细胞以精细胞为主;成熟精子期,精巢体积可达最大,紫红色,生精小管内充满着成熟的精子,退化期;精巢体积减小,半透明乳白色,生精小管内的成熟精子几乎排空。  相似文献   

10.
大弹涂鱼性腺发育的组织学观察   总被引:2,自引:0,他引:2  
于光镜下对大弹涂鱼性腺切片作了组织学观察,对大弹涂鱼卵细胞和精子发育规律进行研究。结果表明:大弹涂鱼在一个生殖季节中只能产卵1次,大弹涂鱼属于一次性产卵类型。大弹涂鱼3月卵母细胞进入大生长期发育阶段,4—6月为繁殖盛期,7—8月为繁殖末期。10月卵巢基本修整完毕,进入Ⅱ′恢复期。卵细胞发育可分为6个时相:卵原细胞、卵母细胞单层滤泡、卵母细胞出现脂滴和卵黄、卵母细胞卵黄充满、卵母细胞核极化、卵母细胞退化时相。卵母细胞膜单层,由具有辐射纹的放射带构成,滤泡膜细胞分泌而成的次级卵膜成为成熟卵子的附着丝。大弹涂鱼2月精巢开始发育,5月GSI值达最高值,平均成熟系数达0.70%,排精量最旺盛,出现高峰。7—9月GSI值明显下降。11月至翌年2月GSI值波动于0.08%—0.20%之间,变辐小,此期间精巢处于静止发育状态。大弹涂鱼的精巢属于小叶型结构。精子发育分为6个时期:精原细胞期、精原细胞增殖期、精母细胞生长成熟期、精子细胞变态期、精子成熟期和退化吸收期。繁殖季节精小叶内充满精子,精小囊消失。    相似文献   

11.
12.
Summary

The stages of spermiogenesis in Myobia murismusculi were investigated on the basis of ultrastructural analysis of both the testes and the female organs: receptaculum seminis and seminal duct. The walls of the testes consist of a thin epithelial layer. Germ and secretory cells lie free in the lumen of the testes. In the early stages of differentiation, both cell types represent clusters of sister cells joined by intercellular bridges. Each secretory cell contains prominent RER and Golgi complex, which produce single dense granule. Growing gradually the granule fills the whole volume of the cell's cytoplasm. Mature secretory cells disintegrate and the secretory product discharges into the testicular lumen. The germ cells are represented by the early, the intermediate and the late spermatids as well as the immature sperm (prospermia). Neither spermatogonia nor meiotic figures were observed in adult males. As spermiogenesis starts, numerous narrow invaginations of the outer membrane (peripheral channels) develop on the cell surface. They form a wide circumferential network connected to pinocytotic vesicles. Owing to the secretory activity of the Golgi complex, a large acrosomal granule is formed in the early spermatids. A long acrosomal filament runs along the intranuclear canal. Nuclear material condenses and forms two spherical bodies of different electron density. The lighter one can be observed until the stage of the late spermatids, when the nuclear envelope almost completely disappears. The electron-dense nuclear body transforms into a definite chromatin body, which is observed in the mature sperm as a cup-shaped structure. The late spermatids are characterized by the presence of a large electronlucent vacuole, which seems to be unique for the process of spermiogenesis in Actinedida. After the spermia enter the female genital tract, the peripheral channels disappear as well as the vacuole. The cells form long amoeboid arms with a special microtubular layer underneath the plasma membrane. The chromatin body is encircled by a large acrosomal granule of complex shape provided by long extensions running deep into the cytoplasm. The cytoplasm contains no organelles except for a group of unmodified mitochondria in the post-nuclear region. The main characteristics of the Myobia spermiogenesis are discussed with regard to other actinedid mites.  相似文献   

13.
14.
Sousa M  Azevedo C 《Tissue & cell》1988,20(4):621-628
The fine structure of the spermatogenic cells in the starfish Marthasterias glacialis was studied regarding acrosome formation. The main finding in the spermatogenesis of M. glacialis is that the formation of the pro-acrosomal vesicles seems to be initiated in late spermatogonia. Small dense bodies resulting from the division of large granulofibrillar masses were also observed in the cytoplasm of late spermatogonia. During spermiogenesis the inner acrosomal vesicle membrane becomes coated first with dense materials originated from the cytoplasmic dense bodies and then with cisternae of endoplasmic reticulum. Both coating materials are incorporated in the periacrosomal space of the mature acrosome. Besides being involved in the genesis of the periacrosomal material, cytoplasmic dense bodies were also seen in close relationship with intercellular bridges and midpiece structures of spermatids. These findings are discussed in comparison with other echinoderm spermatogenesis.  相似文献   

15.
The relative proportions of four major chicken histone H1 subtypes (referred to as H1a, H1b, H1c and H1d) change markedly in different chicken tissues. The relative amount of H1c is higher in nonreplicating somatic tissues, such as liver, than in replicating immature testis. The proportion of H1c sharply decreases as spermatogenesis proceeds, being much lower in mature than in immature testis. It has been proposed that the relative increment of H1c correlates with low rates of cell division in chicken tissues. It was assumed that the sharp decrease in H1c observed during maturation of chicken testis was a consequence of the intensification of proliferative activity in spermatogonia (Berdnikov et al., 1976). Our results, however, clearly show that the decrease of H1c during maturation is due to the low levels of this protein in postreplicative stages of spermatogenesis, where H1c is barely detectable. These results suggest that the presence of the arginine-rich H1c subtype would neither be compatible with the relaxed structure of acetylated chromatin present in active replicating cells nor with the hyperacetylated chromatin characteristic of postreplicative late spermatids undergoing the nucleohistone nucleoprotamine transition.  相似文献   

16.
The course of spermiogenesis in arenicola brasiliensis was observed with the electron microscope. The spermatogonia floating in the body cavity seem to proliferate and differentiate to mature spermatozoa in the coelomic fluid. More than a hundred spermatids are connected to one large central mass of cytoplasm and spermiogenesis proceeds synchronously in one cluster, which changes into a sperm-disc during maturation. The pre-acrosomal vesicle originates from the Golgi-body and gradually changes into the acrosomal vesicle of peculiar structure like a cup upside down. In the process of differentiation of the acrosome, a part of the material in the acrosomal vesicle is transferred into the space between the vesicle and the nucleus. The posterior one-third of the cylindrical nucleus is surrounded by four middle-piece mitochondria. The flagellar axoneme originates from one of the centrioles, which is located near a posterior pit in the nucleus.  相似文献   

17.
A histological study was undertaken to clarify seasonal changes in the spermatogenic epithelium of Japanese macaques. Testicular tissue samples were excised by biopsies from five adult laboratory-maintained males in mating and non-mating seasons. The samples were fixed with Bouin's solution, embedded in paraffin, and stained with PAS and hematoxylin. Microscopic observations on cross-sections of seminiferous tubules revealed that the seminiferous epithelium in the mating season was thicker than in the non-mating season. PAS-stained granules were found in some of the dark A-type spermatogonia, which significantly increased in the non-mating season. Spermatids of the steps preceding the appearance of the acrosomic cap in stages I to III were observed significantly more often than those in the step coinciding with the formation of the acrosomic cap in stage IV. In stage I, the ratio of mature spermatids or spermatozoa to immature spermatids in the mating season was higher than that in the non-mating season. These findings suggest that spermiogenesis, as well as spermatocytogenesis, is inhibited in the non-mating season.  相似文献   

18.
It is important to understand the proliferative activity of the different structures of the male reproductive apparatus in livestock species, such as Sus domesticus, to ensure reproductive efficiency. The main aims of this study were (a) to evaluate the proliferative activity of the spermatogonia in the different stages of the seminiferous cycle and (b) to study the cell proliferation in the epididymal epithelium in each region, identifying the different cells involved. For this, the testes and epididymis of three healthy, sexually mature Sus domesticus boars were used. The organs were processed for light microscopy, and immunohistochemical techniques were used to detect proliferating cell nuclear antigen. The cells immunostaining positively and negatively for proliferating cell nuclear antigen were counted and several parameters and indexes were calculated to evaluate the proliferation in both epithelia, taking into account the stage of the seminiferous epithelium cycle, and, in the case of the epididymal epithelium, the different regions and cells are the same. Finally, a contrast analysis of equality between pairs of means was carried out followed by a least significant differences test, in which differences were considered significant at P < 0.05. In the seminiferous epithelium, the greatest total number of spermatogonia and proliferating spermatogonia was observed in the postmeiotic stages (mainly VII and VIII). The proliferation index of the spermatogonia increased from the meiotic to postmeiotic stages. As regards the epididymal epithelium, the total proliferation index was higher in the caput. In each region, the clear and principal cells showed the highest proliferation index with respect to the total number of cells counted, whereas the proliferation index of each cell with respect to the same type was higher in the clear cells, followed by the narrow and principal cells. In conclusion, the proliferative activity of spermatogonia in the seminiferous epithelium of Sus domesticus is stage-dependent, and mainly occurs in the postmeiotic stages. In the epididymal epithelium, proliferative activity takes place in several cell types and is dependent on the anatomical region of the epididymis. We think that these results may be of importance for understanding the pathologic or reproductive processes in which cell proliferation is involved in the male reproductive system.  相似文献   

19.
20.
Summary Typosyllis pulchra reproduces by the production of three to four gamete-bearing stolons (schizogamy) during consecutive 30-day periods. Although gonads are found in a large number of segments, only those in the posterior-most segments produce gametes and become incorporated into the developing stolon. The more anterior gonads remain undifferentiated and probably sexually undetermined until they are needed in future stolonizations. Gonial cells, which will eventually become either male or female, are ultrastructurally identical at the onset of each stolonization period. Spermatogenesis is marked by a short proliferative period followed by differentiation and spermiogenesis. The first ultrastructural signs of spermatogenesis were found in coelomic spermatogonia on day 10 of stolon formation. Spermatogonia are joined by intercellular bridges, which are maintained until the early spermatid stage. Synaptonemal complexes mark the onset of meiosis, which is apparently synchronized in the syncytial clusters of primary spermatocytes. Spermiogenesis occurs during the final 10 days of stolonization and a variety of stages is present within a single animal. All sperm mature by the time the stolon detaches. Acrosome formation and nuclear condensation are described in addition to the ultrastructure of mature sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号