首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypanosoma brucei undergoes antigenic variation by periodically switching the expression of its variant surface glycoprotein (VSG) genes (vsg) among an estimated 20-40 telomere-linked expression sites (ES), only one of which is fully active at a given time. We found that in bloodstream trypanosomes one ES is transcribed at a high level and other ESs are expressed at low levels, resulting in organisms containing one abundant VSG mRNA and several rare VSG RNAs. Some of the rare VSG mRNAs come from monocistronic ESs in which the promoters are situated about 2 kilobases upstream of the vsg, in contrast to the polycistronic ESs in which the promoters are located 45-60 kilobases upstream of the vsg. The monocistronic ES containing the MVAT4 vsg does not include the ES-associated genes (esag) that occur between the promoter and the vsg in polycistronic ESs. However, bloodstream MVAT4 trypanosomes contain the mRNAs for many different ESAGs 6 and 7 (transferrin receptors), suggesting that polycistronic ESs are partially active in this clone. To explain these findings, we propose a model in which both mono- and polycistronic ESs are controlled by a similar mechanism throughout the parasite's life cycle. Certain VSGs are preferentially expressed in metacyclic versus bloodstream stages as a result of differences in ESAG expression and the proximity of the promoters to the vsg and telomere.  相似文献   

2.
3.
Trypanosomatids are protozoan parasites that cause human and animal disease. Trypanosoma brucei telomeric ESs (expression sites) contain genes that are critical for parasite survival in the bloodstream, including the VSG (variant surface glycoprotein) genes, used for antigenic variation, and the SRA (serum-resistance-associated) gene, which confers resistance to lysis by human serum. In addition, ESs contain ESAGs (expression-site-associated genes), whose functions, with few exceptions, have remained elusive. A bioinformatic analysis of the ESAG5 gene of T. brucei showed that it encodes a protein with two BPI (bactericidal/permeability-increasing protein)/LBP (lipopolysaccharide-binding protein)/PLUNC (palate, lung and nasal epithelium clone)-like domains and that it belongs to a multigene family termed (GR)ESAG5 (gene related to ESAG5). Members of this family are found with various copy number in different members of the Trypanosomatidae family. T. brucei has an expanded repertoire, with multiple ESAG5 copies and at least five GRESAG5 genes. In contrast, the parasites of the genus Leishmania, which are intracellular parasites, have only a single GRESAG5 gene. Although the amino acid sequence identity between the (GR)ESAG5 gene products between species is as low as 15-25%, the BPI/LBP/PLUNC-like domain organization and the length of the proteins are highly conserved, and the proteins are predicted to be membrane-anchored or secreted. Current work focuses on the elucidation of possible roles for this gene family in infection. This is likely to provide novel insights into the evolution of the BPI/LBP/PLUNC-like domains.  相似文献   

4.
5.
6.
7.
The African trypanosome Trypanosoma brucei monoallelically expresses one of more than 1000 Variant Surface Glycoprotein (VSG) genes. The active VSG is transcribed from one of about 15 telomeric VSG expression sites (ESs). It is unclear how monoallelic expression of VSG is controlled, and how inactive VSG ESs are silenced. Here, we show that blocking synthesis of the T. brucei FACT subunit TbSpt16 triggers a G2/early M phase cell cycle arrest in both bloodstream and insect form T. brucei. Segregation of T. brucei minichromosomes in these stalled cells is impaired, implicating FACT in maintenance of centromeres. Strikingly, knock-down of TbSpt16 results in 20- to 23-fold derepression of silent VSG ES promoters in bloodstream form T. brucei, with derepression specific to the G2/M cell cycle stage. In insect form T. brucei TbSpt16 knock-down results in 16- to 25-fold VSG ES derepression. Using chromatin immunoprecipitation (ChIP), TbSpt16 was found to be particularly enriched at the promoter region of silent but not active VSG ESs in bloodstream form T. brucei. The chromatin remodeler FACT is therefore implicated in maintenance of repressed chromatin present at silent VSG ES promoters, but is also essential for chromosome segregation presumably through maintenance of functional centromeres.  相似文献   

8.
In Trypanosoma brucei, uptake of host transferrin is mediated by a heterodimeric, glycosylphosphatidylinositol-anchored receptor derived from the 2 expression site-associated genes 6 and 7 (ESAG6 and ESAG7). By using specific antibodies, it is shown here that T. evansi, a trypanosome species transmitted mechanically by biting flies, also expresses a transferrin receptor composed of ESAG6 and ESAG7. The cellular uptake of transferrin in T. evansi is completely inhibited with anti-T. brucei (ESAG6/7 heterodimer) antibodies. The demonstration of a functional ESAG6/7 transferrin receptor in T. evansi supports further its close relationship to T. brucei.  相似文献   

9.
The transferrin (Tf) receptor of Trypanosoma brucei (TbTfR) is encoded by two expression-site-associated genes, ESAG6 and ESAG7. There are around 20 different expression sites containing different copies of these genes that encode TbTfRs with quite distinct affinities for Tf of various hosts. It was proposed that T. brucei has developed multiple expression sites encoding different TbTfRs to ensure sufficient iron uptake in the presence of antibodies competing for binding to Tf. Here it is shown that anti-TbTfR antibody titres produced during chronic murine trypanosomiasis are only one-tenth of those achieved by immunisation of mice using recombinant TbTfR. Calculations indicate that the concentrations of competing anti-TbTfR antibodies present during chronic T. brucei infection are too low to deprive the parasite of iron. In addition, during human African trypanosomiasis the antibody response to the TbTfR seems to be poor and transient. Altogether, the results suggest that the host antibody response to the TbTfR during chronic infection with T. brucei is too low, if present at all, to prevent sufficient iron uptake by bloodstream forms to promote their growth.  相似文献   

10.
11.
VSG gene 118 is transcribed from a cotransposed pol I-like promoter   总被引:31,自引:0,他引:31  
C Shea  M G Lee  L H Van der Ploeg 《Cell》1987,50(4):603-612
  相似文献   

12.
13.
14.
15.
《The Journal of cell biology》1995,131(5):1173-1182
In Trypanosoma brucei, the products of two genes, ESAG 6 and ESAG 7, located upstream of the variant surface glycoprotein gene in a polycistronic expression site form a glycosylphosphatidylinositol- anchored transferrin-binding protein (TFBP) complex. It is shown by gel filtration and membrane-binding experiments that the TFBP complex is heterodimeric and binds one molecule of transferrin with high affinity (2,300 binding sites per cell; KD = 2.1 nM for the dominant expression site from T. brucei strain 427 and KD = 131 nM for ES1.3A of the EATRO 1125 stock). The ternary transferrin-TFBP complexes with iron-loaded or iron-free ligand are stable between pH 5 and 8. Cellular transferrin uptake can be inhibited by 90% with Fab fragments from anti-TFBP antibodies. After uptake, the TFBP complex and its ligand are routed to lysosomes where transferrin is proteolytically degraded. While the degradation products are released from the cells, iron remains cell associated and the TFBP complex is probably recycled to the membrane of the flagellar pocket, the only site for exo- and endocytosis in this organism. It is concluded that the TFBP complex serves as the receptor for the uptake of transferrin in T. brucei by a mechanism distinct from that in mammalian cells.  相似文献   

16.
Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.  相似文献   

17.
18.
In the bloodstream of the mammalian host, Trypanosoma brucei takes up host transferrin by means of a high-affinity uptake system, presumably a transferrin receptor. Transferrin-binding activity is seen in the flagellar pocket and is absent in insect form trypanosomes. By transfection we have reconstituted a transferrin-binding complex in insect form trypanosomes. Formation of this complex requires the products of two genes that are part of a variant surface glycoprotein expression site, expression site-associated gene (ESAG) 6 (encoding a protein with GPI-anchor) and ESAG 7 (encoding a protein without any obvious membrane attachment). This complex can be precipitated by transferrin-Sepharose and by an antibody directed only against the ESAG 6 protein. Transfection of ESAG 6 or 7 alone did not result in transferrin binding. In the transfected trypanosomes, the products of ESAG 6 alone and the combination of ESAG 6 and 7 did not exclusively localize to the flagellar pocket, but were present all over the surface of the trypanosome. The reconstituted transferrin-binding complex also did not result in the uptake of transferrin. Additional proteins present in bloodstream trypanosomes, but not in sufficient amounts in insect form trypanosomes, may therefore be required for the correct routing of the transferrin-binding complex to the flagellar pocket, and for its rapid internalization after ligand binding.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号