首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This study was set up to examine the effect of plot patterns on the accuracy of phytosociological characterization of tropical vegetation. Fifteen and twenty square plots of 1 ha were demarcated, respectively, in woodland and dense forest in Bénin. Each 1 ha plot was divided into 100 quadrats of one 100 m2. Species of trees in each quadrat were identified and recorded. The cost in terms of time required to record tree species in each 1 ha plot and five random quadrats in a 1 ha plot were also recorded to compute the mean inventory effort for a team of three foresters. From the 100 quadrats in a 1 ha plot, fourteen independent subplots of square and rectangular plots with different sizes were considered by grouping together adjacent quadrats of 100 m2. Eigenanalysis was carried out to compare the subplots. Moreover, the relationship between the relative loss of accuracy (RLA) and the size of subplots was modelled. Plot size highly influenced the RLA (P < 0.05). Findings indicated that the square plots of 1500 and 1000 m2 with an inventory effort of 0.35 and 0.20 man‐days per subplot, respectively in tropical dense forests and woodlands appeared to be the most efficient in the phytosociological characterization of woody vegetation.  相似文献   

2.
Koponen  Piia  Nygren  Pekka  Sabatier  Daniel  Rousteau  Alain  Saur  Etienne 《Plant Ecology》2004,173(1):17-32
Diversity of tree association and forest structure were analysed in relation to microtopography and flooding intensity in a tropical freshwater swamp forest in the Sinnamary river basin, French Guiana. A 530-m-long vegetation transect was established through a hummock-hollow terrain. Nine 10 m× 50 m sample plots, perpendicular to the main transect, were located so that each was as microtopographically uniform as possible. Trees with dbh (diameter at 1.3 m) 10 cm were censused in all plots and trees with 2 cm dbh < 10 cm in three plots. Sixty tree species belonging to 39 genera and 30 families were recorded. The study area was divided into low and high sites according to microtopography and flooding intensity. According to the Czekanowski similarity matrix, the tree association in low, most frequently flooded, sites differed from that in the high sites under intermediate or low flooding intensity. The low sites had higher stand density and lower species richness than the high sites. Trees with dbh 10 cm in low sites were small and stand basal area (SBA) was about the same in low (69.6 m2 ha–1) and high (64.3 m2 ha–1) sites. The low areas were dominated by Pterocarpus officinalis (38% of stems with dbh 10 cm and 36% of SBA) and Malouetia tamaquarina (26 and 15%). Diospyros guianensis (13.4% of stems with dbh 10 cm and 6.1% of SBA), a Caraipa sp. (14.0 and 7.9%), Lecythis corrugata (6.6 and 3.5%) and emergent Caryocar microcarpum (0.9 and 13.9%) were abundant in high sites. Nodulated legume trees, P. officinalis, Hydrochorea corymbosa and Inga disticha, comprised 44% of stems in the low sites. The abundant nodulation suggests that symbiotic dinitrogen fixation may be an adaptation to N-depleted waterlogged soils. Other adaptive responses were litter accumulation between the buttresses of P. officinalis, which formed hummocks above surface water, and clonal growth habit of M. tamaquarina, which resulted in formation of monospecific groves in low sites.  相似文献   

3.
Studies were undertaken on the floristic composition and stand structure of four 1 hectare plots in the lowland forests of Kurupukari, Guyana. A total of 3897 trees, covering 153 species and 31 plant families were recorded at greater than 5 cm diameter at breast height (dbh). The number of species per hectare ranged from 61 to 84 (>5.0 cm dbh) and 50–71 (>10.0 cm dbh). The total number of trees per hectare varied two-fold between study plots, with 45–50% of the trees within the 5–10 cm size-class. Mean total basal area varied from 32.39–34.63 m2 per 100 m2. The four most dominant plant families represented 43.8% of the total number of trees, while representing only 11.2% of the species. No one plant family dominated in more than one of the four study plots, and all four plots held at least one plant family with more than 20% of the total number of trees. Although 14 tree species were common to all four plots, only 26%–35% of the species were represented by a single tree. Between three and seven species represented 50% of the trees within all size-classes, with species dominance occurring within the highest density plot.These tropical forest types of central Guyana may represent some of the lowest diversity forests in the neotropics, whereby the total number of tree species is relatively limited, typically with six dominant canopy species, but the relative abundance of these species is highly variable between the forest types. Mechanisms influencing the competitive interactions associated with species dominance are discussed in relation to the importance of mycorrhizae and the persistence of species dominance.  相似文献   

4.
The structure and dynamics of approximately 64 ha of undisturbed gallery forest were studied over six years. Trees from 31 cm gbh (c. 10 cm dbh) were measured every three years from 1985. They were in 151 (10×20 m) permanent plots in the Gama forest in the Federal District of Brazil. Natural regeneration (individuals under 31 cm gbh) was measured in subplots (of 2×2 m, 5×5 m and 10×10 m) within the 200 m2 plots. The total tree flora (gbh31 cm) consisted of 93 species, 81 genera and 44 families in 1985. The Leguminosae, Myrtaceae and Rubiaceae were the families richest in number of species. Most individuals and species were under 45 cm diameter and 20 m high while the maximum diameter per species ranged from 30 to 95 cm. The density structure of trees and natural regeneration was similar, in which the densities of c. 80% of the species represented less than 1% of the total density. The periodic mean annual diameter increment for trees from 10 cm dbh, was c. 0.25 cm/year. Variability was high with coefficients of variation c. 100% or more. The Gama community may maintain tree diversity and structure in undisturbed conditions. Regeneration of c. 80% of the species was found in the establishing phase (poles); the diameter structure was typical of native forests with the number of individuals decreasing with increasing size classes and showing little change over the six years; recruitment compensated for the mortality of most of the abundant species. The soils in Gama gallery forest were dystrophic with high aluminium content. Multivariate analysis suggested the stream, natural gaps and edges as the main causes of floristic differentiation at the community level.  相似文献   

5.
The study examined simultaneously, the effect of tree spatial distribution, inventory plot size and shape on the estimation error of basal area in two contrasting environments. Twenty and fifteen square plots of 1 ha each (divided into 100 quadrats of 0.01 ha) were randomly set in dense forest and woodland, respectively. Thirteen subplots of various shapes and sizes were obtained from the association of adjacent quadrats. Estimation error was calculated using residual mean square of one‐way ANOVA, based on replications of subplot within 1 ha plots. Tree spatial distribution was measured using Green index. Weighted linear regression and mixed effect models were applied to Box & Cox transformed data. In general, the estimation error of basal area decreased with increase in subplot size. However, the effects of tree spatial distribution and plot shape varied with the vegetation type. Where trees tended to be aggregated, estimation error increased with degree of aggregation, and rectangular plots of 0.24 ha produced an acceptable precision. It was concluded that 0.24 ha rectangular plots can be used in tropical environments where the target parameters vary constantly according to one direction, while square plots of the same size are optimal for reliable analysis in case of randomness.  相似文献   

6.
Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥1 cm dbh, all 1,966 snags ≥10 cm dbh, and all shrub patches ≥2 m2. Basal area of the 26 woody species was 62.18 m2/ha, of which 61.60 m2/ha was trees and 0.58 m2/ha was tall shrubs. Large-diameter trees (≥100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P≤0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses.  相似文献   

7.
Paoli GD  Curran LM  Slik JW 《Oecologia》2008,155(2):287-299
Studies on the relationship between soil fertility and aboveground biomass in lowland tropical forests have yielded conflicting results, reporting positive, negative and no effect of soil nutrients on aboveground biomass. Here, we quantify the impact of soil variation on the stand structure of mature Bornean forest throughout a lowland watershed (8–196 m a.s.l.) with uniform climate and heterogeneous soils. Categorical and bivariate methods were used to quantify the effects of (1) parent material differing in nutrient content (alluvium > sedimentary > granite) and (2) 27 soil parameters on tree density, size distribution, basal area and aboveground biomass. Trees ≥10 cm (diameter at breast height, dbh) were enumerated in 30 (0.16 ha) plots (sample area = 4.8 ha). Six soil samples (0–20 cm) per plot were analyzed for physiochemical properties. Aboveground biomass was estimated using allometric equations. Across all plots, stem density averaged 521 ± 13 stems ha−1, basal area 39.6 ± 1.4 m2 ha−1 and aboveground biomass 518 ± 28 Mg ha−1 (mean ± SE). Adjusted forest-wide aboveground biomass to account for apparent overestimation of large tree density (based on 69 0.3-ha transects; sample area = 20.7 ha) was 430 ± 25 Mg ha−1. Stand structure did not vary significantly among substrates, but it did show a clear trend toward larger stature on nutrient-rich alluvium, with a higher density and larger maximum size of emergent trees. Across all plots, surface soil phosphorus (P), potassium, magnesium and percentage sand content were significantly related to stem density and/or aboveground biomass (R Pearson = 0.368–0.416). In multiple linear regression, extractable P and percentage sand combined explained 31% of the aboveground biomass variance. Regression analyses on size classes showed that the abundance of emergent trees >120 cm dbh was positively related to soil P and exchangeable bases, whereas trees 60–90 cm dbh were negatively related to these factors. Soil fertility thus had a significant effect on both total aboveground biomass and its distribution among size classes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Characteristics of giant panda herbivory sites and clonal regeneration of an arrow bamboo Fargesia qinlingensis following giant panda grazing were studied in the Qinling Mountains of China. Three types of plots were located in a pandas’ summer habitat in 2002: herbivory (naturally grazed by giant pandas), clipped (simulated panda herbivory), and control. Average area of herbivory sites was 2.92 m2 and average distance from herbivory sites to the closest tree (dbh > 10 cm) was 1.0 m. Pandas avoided thin bamboo culms with basal diameters <5 mm. Average height of stumps of culms grazed by panda was 0.67 m and average density of grazed culms was 9.0 culms m−2. Annual culm mortality rate was significantly greater in herbivory and clipped plots than in control plots while annual recruitment rate was not significantly different among the three plot types in 2003. Neither recruitment rate nor mortality rate were significantly different among the three plot types in 2004. Annual recruitment rate was significantly greater than annual mortality rate only in control plots in both 2003 and 2004, suggesting static ramet dynamics in disturbed plots (herbivory and clipped). Density of new shoots was not significantly different, but basal diameter of new shoots was significantly less in herbivory plots compared to control plots in 2002. Differences of annual mortality rate and growth of new shoots found between control plots and herbivory plots suggest that clonal regeneration of F. qinlingensis culms was negatively affected by giant panda grazing. Therefore, no evidence of a clonal integration compensatory response to panda herbivory was found in F. qinlingensis.  相似文献   

9.
Liana diversity was inventoried in four tropical dry evergreen forest sites that are characterized by numerous trees, of short stature and small diameter, and a varying degree of anthropogenic disturbance, on the Coromandel coast of south India. A 1-ha plot was established in each of the four sites and was subdivided into 100 quadrats of 10 m× 10 m. All lianas 1 cm diameter at breast height (dbh) rooted within the plot were enumerated. The species richness and density of lianas, with respect to site disturbance and forest stature, varied across the sites. Liana density totaled 3307 individuals (range 497–1163 individuals ha–1) and species richness totaled 39 species (range 24–29 species ha–1) representing 34 genera and 24 families. Combretaceae, Asclepiadaceae, Capparaceae and Vitaceae were the well-represented families. The top five species Strychnos minor, Combretum albidum, Derris ovalifolia, Jasminum angustifolium and Reissantia indica contributed 55% of total density. The slopes of the species–area curves were different for each of the four sites and the curve stabilized in only one site. Of the four climbing modes recognized among the total 39 species, 18 were twiners (56% of the total density). Eight species (24% of density) were tendril climbers and 12 species (16% of density) were scramblers. Hugonia mystax was the only hook climber. All the 39 species and 88% of liana density were encountered within a category of 6 cm dbh or less, and a similar pattern prevailed in the individual sites. Of the three diaspore dispersal modes found among the 39 liana species, animal (64%) and wind (23%) dispersal were predominant over the autochorous mode (13%). Liana diversity and distribution in dry forest communities appear to be influenced by forest stature and site disturbance levels. In the light of the extent of liana diversity and sacred grove status of the study sites, the need for forest conservation, involving local people, is emphasized.  相似文献   

10.
Species richness and density of understory plants were investigated in eight 1 ha plots, distributed one each in undisturbed and disturbed tropical evergreen, semi-evergreen, deciduous and littoral forests of Little Andaman island, India, which falls under one of the eight hottest hotspots of Biodiversity in the world viz. the Indo-Burma. One hundred 1 m−2 quadrats were established in each 1 ha plot, in which all the understory plants (that include herbs, undershrubs, shrubs and herbaceous climbers) were enumerated. The total density of understory plants was 6,812 individuals (851 ha−1) and species richness was 108 species, representing 104 genera and 50 families. Across the four forest types and eight study plots, the species richness ranged from 10 to 39 species ha−1. All the disturbed sites harbored greater number of species than their undisturbed counterparts. Herbs dominated by species (63%) and density (4,259 individuals). The grass Eragrostis tenella (1,860 individuals; IVI 40), the invasive climber Mikania cordata (803; IVI 20) and the shrub Anaxagorea luzonensis (481; IVI 17.5) were the most abundant species. Poaceae, Asteraceae, Acanthaceae, Orchidaceae and Euphorbiaceae constituted the species-rich families represented by 6 species each. The species-area curves attained an asymptote at 0.8 ha level except in sites DD and DL, indicating 1 ha plot is not sufficient to capture all the understory species in disturbed forests. The alien weeds formed about one-fourth of the species richness (31 species; 28%) and density (1,926 individuals; 28.3%) in the study sites, indicating the extent of weed invasion and the attention required for effective conservation of the native biodiversity of the fragile island forest ecosystem.  相似文献   

11.
Understanding plant species diversity patterns and distributions is critical for conserving and sustainably managing tropical rain forests of high conservation value. We analyzed the alpha‐diversity, species abundance distributions, and relative ecological importance of woody species in the Budongo Forest, a remnant forest of the Albertine Rift in Uganda. In 32 0.5‐ha plots, we recorded 269 species in 171 genera and 51 families with stems of ≥2.0 cm in diameter at breast height (dbh). There were 53 more species with stems of ≥2.0 cm dbh than with stems of ≥10 cm dbh, of which 33 were treelets and 20 were multi‐stemmed shrubs. For both minimum stem diameter cut‐offs (i.e., ≥2 cm dbh vs. ≥10 cm dbh), the Fabaceae, Euphorbiaceae, Ulmaceae, and Meliaceae families and the species Cynometra alexandri, Lasiodiscus mildbraedii, and Celtis mildbraedii had the highest relative ecological importance. The relative ecological importance of some species and families changed greatly with the minimum stem diameter measured. Alpha‐diversity, species richness, and species abundance distributions varied across historical management practice types, forest community types, and as a function of minimum stem diameter. Species richness and Shannon–Weiner diversity index were greater for species with stems of ≥2.0 cm dbh than of ≥10 cm dbh. The decrease in species evenness with an increasing number of plots was accompanied by an increase in species richness for trees of both minimum diameters. This forest is characterized by a small number of abundant species and a relatively large proportion of infrequent species, many of which are sparsely distributed and with restricted habitats. We recommend lowering the minimum stem diameter measured for woody species diversity studies in tropical forests from 10 cm dbh to 2 cm dbh to include a larger proportion of the species pool.  相似文献   

12.
Density‐dependent mortality has been recognized as an important mechanism that underpins tree species diversity, especially in tropical forests. However, few studies have attempted to explore how density dependence varies with spatial scale and even fewer have attempted to identify why there is scale‐dependent differentiation. In this study, we explore the elevational variation in density dependence. Three 1‐ha permanent plots were established at low and high elevations in the Heishiding subtropical forest, southern China. Using data from 1200 1 m2 seedling quadrats, comprising of 200 1 m2 quadrats located in each 1‐ha plot, we examined the variation in density dependence between elevations using a generalized linear mixed model with crossed random effects. A greenhouse experiment also investigated the potential effects of the soil biota on density‐dependent differentiation. Our results demonstrated that density‐dependent seedling mortality can vary between elevations in subtropical forests. Species found at a lower elevation suffered stronger negative density dependence than those found at a higher elevation. The greenhouse experiment indicated that two species that commonly occur at both elevations suffered more from soilborne pathogens during seed germination and seedling growth when they grew at the lower elevation, which implied that soil pathogens may play a crucial role in density‐dependent spatial variation.  相似文献   

13.
The importance of mounds created by Macrotermes subhyalinus as safe site for tree regeneration was analysed in a savannah woodland of Burkina Faso. Plantlets (height <1.5 m) were sampled and followed over an year in 72 × 4 m2 quadrats located on M. subhyalinus mounds and adjacent areas. The mechanisms of regeneration and plantlet mortality were also determined. We identified three regeneration mechanisms: seedlings regenerated by seed (abundant on mounds), sprouts (abundant on adjacent areas) and root suckers (a rare case on both sites). A total of 37 species representing 17 families and 30 genera were found on all quadrats, of which 29 species were found on termite mounds and 22 species on adjacent areas. Species richness and density of plantlets at the 4 m2 scale were higher on mounds than in the adjacent area (P < 0.05). Among plantlet categories, seedling density was significantly different among microhabitats (P < 0.001) and across sampling periods (P < 0.01) and, the majority of plantlet individuals appeared within the 0–25 cm height class. The mortality of plantlets and particularly seedling mortality differed significantly between microhabitats (P < 0.01) and between periods (P < 0.01), whereas more than half the variation in the death of Acacia erythrocalyx seedlings (the most abundant species) were related to the density of the live seedlings of the same species (P < 0.001). The observed mortality rate was way below 50%; plantlet density remained higher on mound during sampling periods as compared to the adjacent area. It can thus be concluded that Macrotermes termite mounds are favourable sites for the recruitments of woody plants in savannah woodlands.  相似文献   

14.
The population structure and regeneration of canopy species were studied in a 4 ha plot in an old-growth evergreen broad-leaved forest in the Aya district of southwestern Japan. The 200 m × 200 m plot contained 50 tree species, including 22 canopy species, 3,904 trees (dbh5 cm) and a total basal area of 48.3 m2/ha. Forty one gaps occurred within the plot, and both the average gap size (67.3 m2) and the total area of gap to plot area (6.9%) were small. Species found in the canopy in the plot were divided into three groups (A, B, C) based on size and spatial distribution patterns, and density in each tree size. Group A (typical species: Distylium racemosum, Persea japonica) showed a high density, nearly random distribution and an inverse J-shaped size distribution. Species in group B (Quercus salicina, Quercus acuta, Quercus gilva) were distributed contagiously with conspicuous concentration of small trees (<5 cm dbh) around gaps. However, the species in this group included few trees likely to reach the canopy in the near future. Group C included fast-growing pioneer and shade intolerant species (e.g. Cornus controversa, Carpinus tschonoskii, Fagara ailanthoides), which formed large clumps. Most gaps were not characterized by successful regeneration of group B and C but did appear to accelerate the growth of group A. Group B species appear to require long-lived or large gaps while group C species require large, catastrophic disturbances, such as landslides, for regeneration.  相似文献   

15.
We summarize a long-term study of the effects of edge creation on establishment of the economically important arboreal palm Oenocarpus bacaba in an experimentally fragmented landscape in central Amazonia. Recruitment and mortality of large individuals (≥10 cm diameter-at-breast-height) were recorded within 21 1-ha plots in fragmented and intact forests for periods of up to 22 years. In addition, 12 small (0.7 × 14 m) sub-plots within each 1-ha plot were used to enumerate the abundance of seedlings and saplings (5–400 cm tall). On average, the recruitment of large trees was over two times faster near forest edges, leading to a sharp (90%) increase in the mean population density of large individuals near forest edges, whereas the density of larger trees remained constant in the forest interior. Overall seedling and sapling density was significantly lower in edge than interior plots, but edge plots had a much higher proportion of larger (>100 cm tall) saplings. Our findings demonstrate that forest edges can have complex effects on tree demography and that one must consider all tree life stages in order to effectively assess their effects on plant populations.  相似文献   

16.
Variations in the composition and structure of mid‐altitude, semi‐deciduous topical forest in a 0.64‐ha plot in Mpanga Forest Reserve, Uganda, are described for a 38‐year period to 2006. Repeat surveys of trees in the plot with a girth ≥30 cm at reference height in 1982, 1993 and 2006, following a baseline survey in 1968, indicate only relatively minor fluctuations in density, Shannon diversity, evenness, basal area (BA) and estimated above ground biomass. The largest trees [diameter at breast height (dbh) > 40 cm] and main canopy taxa (e.g. Celtis mildbraedii) accounted for the largest fraction of BA. Mortality was the highest amongst taxa classed as early seral, understorey and/or in the smallest size category (dbh = 9.5–20 cm), while new recruits were predominantly understorey taxa. Only one tree was recorded as felled for human use between the surveys of 1968 and 1993. In contrast, a considerable increase in anthropogenic disturbance was evident at the time of the 2006 survey, and illegal logging now poses a substantial threat to future resource availability and carbon storage in what was for a time one of the most protected areas of forest in Uganda.  相似文献   

17.
The role of seed bank, seed rain, and regeneration from seedlings and sprouts after swidden agriculture was compared in 5-, 10- and 20-year-old secondary forest and in a primary forest in Bragantina, Pará, Brazil. The seed bank (0–5 cm soil depth) was largest in the 5-year-old forest (1190 ± 284 seeds m−2) and decreased nearly ten-fold with age to 137 ± 19 seeds m−2 in the primary forest. The highest seed rain was in the 5-year-old forest (883 ± 230 seeds m−2 year−1) and the least in the primary forest (220 ± 80 seeds m−2 year−1). Large plants (≥5 cm dbh) had more individuals and species that regenerated from sprouts than from seeds and the most abundant tree species in the secondary forest stands of all ages appear to be maintained by sprouting. The smaller individuals (≥1 m tall, <5 cm dbh) in the 5-year-old forest were mainly from sprouts, but those in the older secondary forests originated mainly from seeds. These results show that at the beginning of succession, although many species can be introduced to swidden fallow from seed bank and seed rain, it is the sprout that is the main source of recruits of primary forest species in secondary forests in Bragantina.  相似文献   

18.
Liana is a life form that possesses high importance in many Neotropical forests. Density of climbers apparently increases with the intervention rate (e.g. logging). The aim of this work is to characterize the structure, floristic composition and soils of a sector classified as Liana Forest (LF). We identified an LF sector in a not-logged area; three 1 ha square plots were measured (individuals ≥ 10 cm dbh, “diameter at breast height”). In each plot, we evaluate four 100 m2 square understory subplots (all spermatophyta individuals < 10 cm dbh). LF has a low canopy ( < 15 m) and is dominated by Alexa imperatricis and Pentaclethra macroloba. Basal area (20.4 m2ha? 1) and diversity (H′ = 2.6) are lower than other surrounding plots. Understory is dominated by gnarled climbers, and the most important are Cheiloclinium hippocrateoides and Bauhinia scala-simiae. Soil is extremely acidic, with very low fertility but is similar to neighboring places. We conclude that LF was neither originated by edaphic restrictions nor logging; LF probably suffered a hurricane wind that fell down most of the canopy trees, thick individuals of climber species also disappeared, and the current successional stage favors a recovery dominated with thin individuals of this life form.  相似文献   

19.
An understanding of the relationships between spatial heterogeneity and disturbance regime is important for establishing the mechanisms necessary to maintain biodiversity. Our objective was to examine how the configuration of disturbance by burrowing rodents (Siberian marmot) affected the spatial heterogeneity of vegetation and soil nutrient properties. We established three 2500-m2 (50 m × 50 m) isolated-burrows plots and three 2500-m2 clustered-burrows plots in a Mongolian grassland. Each plot was subdivided into 4-m2 quadrats, and the plant species richness, percent coverage, and soil nutrient properties in the quadrats were surveyed. Spatial heterogeneity was calculated for vegetation using the mean dissimilarity of species composition among sample quadrats, and geostatistical analysis was used to calculate soil properties. Heterogeneous patches of plants such as Achnatherum splendens and higher nutrient concentrations were found only near the clustered burrows. As a result, spatial heterogeneities of vegetation and soil nutrient properties were higher in the clustered colony than those in the isolated colony. The configuration of disturbance patches affected the spatial heterogeneity at the landscape level through the spatial pattern of disturbance frequency.  相似文献   

20.
We studied the relative effects of landscape configuration, environmental variables, forest age, and spatial variables on estimated aboveground biomass (AGB) in Costa Rican secondary rain forests patches. We measured trees ≥5 cm dbh in 24, 0.25 ha plots and estimated AGB for trees 5–24.9 cm dbh and for trees >25 cm dbh using two allometric equations based on multispecies models using tree dbh and wood‐specific gravity. AGB averaged 87.3 Mg/ha for the 24 plots (not including remnant trees) and 123.4 Mg/ha including remnant trees (20 plots). There was no effect of forest age on AGB. Variation partitioning analysis showed that soils, climate, landscape configuration, and space together explained 61% of tree AGB variance. When controlling for the effects of the other three variables, only soils remained significant. Soil properties, specifically K and Cu, had the strongest independent effect on AGB (variation partitioning, R2 = 0.17, p = 0.0310), indicating that in this landscape, AGB variation in secondary forest patches is influenced by soil chemical properties. Elucidating the relative influence of soils in AGB variation is critical for understanding changes associated with land cover modification across Neotropical landscapes, as it could have important consequences for land use planning since secondary forests are considered carbon sinks. Abstract in Spanish is available with online material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号