首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Chemokines like RANTES appear to play a role in organ transplant rejection. Because RANTES is a potent agonist for the chemokine receptor CCR1, we examined whether the CCR1 receptor antagonist BX471 is efficacious in a rat heterotopic heart transplant rejection model. Treatment of animals with BX471 and a subtherapeutic dose of cyclosporin (2.5 mg/kg), which is by itself ineffective in prolonging transplant rejection, is much more efficacious in prolonging transplantation rejection than animals treated with either cyclosporin or BX471 alone. We have examined the mechanism of action of the CCR1 antagonist in in vitro flow assays over microvascular endothelium and have discovered that the antagonist blocks the firm adhesion of monocytes triggered by RANTES on inflamed endothelium. Together, these data demonstrate a significant role for CCR1 in allograft rejection.  相似文献   

2.
3.
Angiotensin II (Ang-II) is associated with atherogenesis and arterial subendothelial mononuclear leukocyte infiltration. We have demonstrated that Ang-II causes the initial attachment of mononuclear cells to the arteriolar endothelium. We now report on the contribution of CC chemokines to this response. Intraperitoneal administration of 1 nM Ang-II induced MCP-1, RANTES, and MIP-1alpha generation, maximal at 4 h, followed by mononuclear leukocyte recruitment at 8 and 24 h. Using intravital microscopy within the rat mesenteric microcirculation 4 h after exposure to 1 nM Ang-II, arteriolar mononuclear cell adhesion was 80-90% inhibited by pretreatment with Met-RANTES, a CCR1 and CCR5 antagonist, or an anti-MCP-1 antiserum, without affecting the increased endothelial expression of P-selectin and VCAM-1. Conversely, leukocyte interactions with the venular endothelium, although inhibited by Met-RANTES, were little affected by the anti-MCP-1. Using rat whole blood in vitro, Ang-II (100 nM) induced the expression of monocyte CD11b that was inhibited by Met-RANTES but not by anti-MCP-1. Stimulation of human endothelial cells (human umbilical arterial endothelial cells and HUVECs) with 1-1000 nM Ang-II, predominantly acting at its AT(1) receptor, induced the release of MCP-1 within 1 h, RANTES within 4 h, and MCP-3 within 24 h. Eotaxin-3, a natural CCR2 antagonist, was released within 1 h and may delay mononuclear cell responses to MCP-1. Therefore, Ang-II-induced mononuclear leukocyte recruitment at arterioles and venules is mediated by the production of different CC chemokines. Thus, Ang-II may be a key molecule in the initial attachment of mononuclear cells to the arterial endothelium in cardiovascular disease states where this event is a characteristic feature.  相似文献   

4.
Glomerular endothelial nitric oxide synthase expression is decreased in humans during acute rejection and chronic renal transplant failure (CRTF). This may contribute to vascular damage through changes in the renal hemodynamics and enhanced endothelial adhesion of leukocytes and platelets. Dietary supplementation of L-arginine may increase endothelial NO production, thereby protecting the vascular wall and improving renal hemodynamics. We tested the hypothesis that long-term L-arginine supplementation attenuates the development of CRTF in an experimental model for renal transplantation. In the Fisher 344 to Lewis rat model for renal transplantation, renal function and histology of untreated rats was compared with rats receiving L-arginine in the drinking water (10g/L), starting 2 days before transplantation. Every 4 weeks systolic blood pressure was measured and serum and urine were collected for measurement of nitrite and nitrate (NO(x)), creatinine, and proteinuria. At 34 weeks the histological renal damage was assessed by scoring focal glomerulosclerosis and measurement of alpha-smooth muscle actin (alpha-SMA) expression. Urinary NO(x) was significantly increased in treated animals. Proteinuria was significantly lower in L-arginine-treated animals from week 24 onward (p<0.05). Plasma creatinine and creatinine clearance did not differ between the groups. The focal and segmental glomerulosclerosis (FGS) score (max 400) at week 34 was also significantly lower in treated rats arbitrary U (20+/-21 vs 61+/-67 arbitrary U; p<0.05). The expression of alpha-SMA was lower in L-arginine-treated rats than in untreated rats (1.93+/-0.8% area surface vs 3.64+/-2.5% area surface). In conclusion, in this experimental model for CRTF, L-arginine administration significantly reduced FGS and proteinuria, without affecting renal function. Our data suggest that dietary L-arginine supplementation attenuates progression of CRTF and may therefore be an additional therapeutic option in human renal allograft recipients.  相似文献   

5.
Central mechanisms leading to ischemia induced allograft rejection are apoptosis and inflammation, processes highly regulated by the urokinase-type plasminogen activator (uPA) and its specific receptor (uPAR). Recently, up-regulation of uPA and uPAR has been shown to correlate with allograft rejection in human biopsies. However, the causal connection of uPA/uPAR in mediating transplant rejection and underlying molecular mechanisms remain poorly understood. In this study, we evaluated the role of uPA/uPAR in a mice model for kidney ischemia reperfusion (IR) injury and for acute kidney allograft rejection. uPAR but not uPA deficiency protected from IR injury. In the allogenic kidney transplant model, uPAR but not uPA deficiency of the allograft caused superior recipient survival and strongly attenuated loss of renal function. uPAR-deficient allografts showed reduced generation of reactive oxygen species and apoptosis. Moreover, neutrophil and monocyte/macrophage infiltration was strongly attenuated and up-regulation of the adhesion molecule ICAM-1 was completely abrogated in uPAR-deficient allografts. Inadequate ICAM-1 up-regulation in uPAR(-/-) primary aortic endothelial cells after C5a and TNF-alpha stimulation was confirmed by in vitro experiments. Our results demonstrate that the local renal uPAR plays an important role in the apoptotic and inflammatory responses mediating IR-injury and transplant rejection.  相似文献   

6.
These studies test whether allograft rejection can be blocked by interference with leukocyte adhesion, using a murine IgG2a mAb (R6.5) reactive with monkey ICAM-1 (CD54). In 16 Cynomolgus renal allograft recipients, R6.5 was administered prophylactically as the sole immunosuppressive agent for 12 days (0.01 to 2 mg/kg/day). Survival in 14 recipients with technically successful grafts was significantly prolonged (24.2 +/- 2.4 vs 9.2 +/- 0.6 days for controls; p less than 0.001). Intercellular adhesion molecule-1 (CD54) (ICAM-1) was expressed on vascular endothelium in the kidney and other organs in the monkey in a pattern similar to that in humans. During cellular rejection in controls, ICAM-1 expression increased on endothelial cells, infiltrating mononuclear leukocytes and tubular cells. Biopsies during R6.5 administration showed decreased T cell infiltration (CD2, CD8, CD4) compared with controls and decreased arterial endothelial inflammation. No changes occurred in circulating T cells, aside from variable coating with mIgG. In six of eight other recipients R6.5 administration (0.5 to 2 mg/kg/day for 10 days) reversed preexisting rejection that resulted from taper of Cyclosporine to subtherapeutic levels. Responding grafts showed decreased edema and hemorrhage but no consistent change in the infiltrate. At 1 h after the first dose, mouse IgG deposited primarily on the graft vascular endothelium without any change in the inflammatory infiltrate. Mouse IgG also deposited on the endothelium of normal organs without eliciting an inflammatory response and was cleared from the endothelium within 4 days. Inasmuch as the principal site of binding was the vascular endothelium, we hypothesize that the antibody blocks adhesion to graft ICAM-1 molecules on the vessels. Anti-ICAM-1 also binds to recipient cells and may interfere with Ag presentation and/or T cell interactions. Whatever the mechanism(s), these studies indicate that an anti-ICAM-1 antibody inhibits T cell mediated injury in vivo, and that ICAM-1 is a critical molecule in the pathogenesis of allograft rejection.  相似文献   

7.
Chemokines have well characterized proinflammatory actions, including the ability to induce extravasation of leukocytes that participate in chronic inflammation. In this study, we evaluated the role of a C-C chemokine, RANTES, in the chronic phase of a rat model of colitis. Colitis was induced by intracolonic administration of trinitrobenzene sulfonic acid. At various timepoints thereafter (2 h to 14 days), colonic tissue levels of several chemokines were measured. Unlike the expression of monocyte chemoattractant protein-1, macrophage inflammatory protein-2, and cytokine-induced neutrophil chemoattractant, the expression of RANTES was significantly elevated during the chronic phase of colitis (> or =7 days after induction). Colonic RANTES mRNA expression was also significantly elevated during the chronic phase of colitis. The numbers of macrophages and monocytes in the colonic mucosa increased substantially during the chronic phase, as did expression of two of the receptors (CCR1 and CCR5) to which RANTES is known to bind. Administration on days 7 through 14 after trinitrobenzene sulfonic acid administration of a CCR1/CCR5 receptor antagonist, Met-RANTES, resulted in a significant reduction of both macroscopic and microscopic colonic damage, as well as reducing the recruitment into the colon of monocytes, mast cells, and neutrophils. In some rats, treatment with Met-RANTES resulted in a near-complete resolution of colonic damage and inflammation. These results suggest a crucial role of RANTES in the progression from acute to chronic inflammation in a rat model of colitis.  相似文献   

8.
Studies in experimental animals and younger women suggest a protective role for estrogen; however, clinical trials may not substantiate this effect in older females. Therefore, the present study assessed the outcome of ovariectomy in older mRen2. Lewis rats subjected to a high-salt diet for 4 wk. Intact or ovariectomized (OVX, 15 wk of age) mRen2. Lewis rats were aged to 60 wk and then placed on a high-salt (HS, 8% sodium chloride) diet for 4 wk. Systolic blood pressures were similar between groups [OVX 169 +/- 6 vs. Intact 182 +/- 7 mmHg; P = 0.22] after the 4-wk diet; however, proteinuria [OVX 0.8 +/- 0.2 vs. Intact 11.5 +/- 2.6 mg/mg creatinine; P < 0.002, n = 6], renal interstitial fibrosis, glomerular sclerosis, and tubular casts were lower in OVX vs. Intact rats. Kidney injury molecule-1 mRNA, a marker of tubular damage, was 53% lower in the OVX HS group. Independent from blood pressure, OVX HS rats exhibited significantly lower cardiac (24%) and renal (32%) hypertrophy as well as lower C-reactive protein (28%). Circulating insulin-like growth factor-I (IGF-I) levels were not different between the Intact and OVX groups; however, renal cortical IGF-I mRNA and protein were attenuated in OVX rats [P < 0.05, n = 6]. We conclude that ovariectomy in the older female mRen2. Lewis rat conveys protection against salt-dependent increase in renal injury.  相似文献   

9.
Inhaled nitric oxide (NO) has been shown to have some protective effect in the peripheral distal inflamed vasculature. The objective of the study was to determine whether inhaled NO would reduce endotoxin-induced leukocyte activation and myocardial contractile dysfunction. Rats were treated with either saline or endotoxin (10 mg/kg iv) and then allowed to breathe (4 h) either air or air plus NO (10 ppm). In endotoxemic rats, mesenteric venular endothelium leukocyte firm adhesion increased compared with control rats (1.15 +/- 0.32 vs. 4.08 +/- 0.96 leukocytes/100 microm; P < 0.05). Inhaled NO significantly attenuated endotoxin-induced venular endothelium leukocyte adhesion (4.08 +/- 0.96 vs. 1.86 +/- 0.76 leukocytes/100 microm; P < 0.05) and FITC-conjugated anti-intercellular adhesion molecule-1 fluorescence intensity. Endotoxin-induced myocardial dysfunction and leukocyte content increases were reduced in inhaled NO-treated rats. These observations suggest that inhaled NO reduces the degree of cardiovascular dysfunction and inflammation in endotoxemic rats.  相似文献   

10.
The CXC chemokine IL-8, which promotes adhesion, activation, and transmigration of polymorphonuclear neutrophils (PMN), has been associated with production of tissue injury in reperfused myocardium. Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric peptide that is a key regulator of genes such as heme oxygenase (HO)-1 expressed under hypoxic conditions. We hypothesized that HO-1 plays an important role in regulating proinflammatory mediator production under conditions of ischemia-reperfusion. HIF-1 was activated in the human microvascular endothelial cell line (HMEC-1) with the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). DMOG significantly attenuated cytokine-induced IL-8 promoter activity and protein secretion and cytokine-induced PMN migration across human microvascular endothelial cell line HMEC-1 monolayers. In vivo studies in a rabbit model of myocardial ischemia-reperfusion showed that rabbits pretreated with a 20 mg/kg DMOG infusion (n = 6) 24 h before study exhibited a 21.58 +/- 1.76% infarct size compared with 35.25 +/- 2.06% in saline-treated ischemia-reperfusion animals (n = 6, change in reduction = 39%; P < 0.001). In DMOG-pretreated (20 mg/kg) animals, plasma IL-8 levels at 3 h after onset of reperfusion were 405 +/- 40 pg/ml vs. 790 +/- 40 pg/ml in saline-treated ischemia-reperfusion animals (P < 0.001). DMOG pretreatment reduced myocardial myeloperoxidase activity, expressed as number of PMN per gram of myocardium, to 1.43 +/- 0.59 vs. 4.86 +/- 1.1 (P = 0.012) in saline-treated ischemia-reperfused hearts. Both in vitro and in vivo DMOG-attenuated IL-8 production was associated with robust HO-1 expression. Thus our data show that HIF-1 activation induces substantial HO-1 expression that is associated with attenuated proinflammatory chemokine production by microvascular endothelium in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号