首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The ontogenetic structure and longitudinal variability of ichthyoplankton in a confluence zone of two river systems in the Eastern Amazon were evaluated between December 2018 and April 2019, at the time 137 eggs and 7,687 larvae of fish were captured. Ichthyoplankton proved to be heterogeneous between sections of rivers with differences in the number of taxa and abundance. The assemblages were distinguished by a NMDS Analysis, a ANOSIM, a SIMPER and a CCA, they presented a spatial zonation pattern with strong distinction and variability in the composition of the species between the river systems, under strong influence of limnological variables. The assemblages were mainly represented by larvae of Clupeiformes and Perciformes in the clear waters of the Tapajós river and Characiformes and Siluriforms in the cloudy waters of the Amazon river, influenced by the existence of a limnological gradient. Larvae in more advanced development stages were predominant in the Tapajós river while early stages were dominant in the Amazon river. The confluence zone does not seem to be a spawning area, but it is an important transport site for the larvae to reach the nursery areas in the lower stretch of the Amazon river. The encounter of these two river systems seems to guarantee the survival and biological recruitment of several fish species.  相似文献   

2.
3.
The ontogenetic patterns of habitat use by a community of fishes in the main channel of the Broken River, an Australian lowland river, was investigated. Stratified sampling was conducted fortnightly across six habitat types throughout the spring‐summer period within the main channel. As predicted by the 'low flow recruitment hypothesis', backwaters and still littoral habitats were important nursery habitats for most species. These habitats were found to be used by some species throughout all stages of their life cycle, while other species showed clear ontogenetic shifts in habitat preference. Only one species, Murray cod Maccullochella peelii peelii , was never found in backwaters. This study confirms the significance of main channel habitats in the rearing of larvae of some riverine fish species, and emphasizes the importance of considering the habitat requirements of all stages of a fish's life cycle in the management and restoration of rivers and streams.  相似文献   

4.
Efforts to restore fish communities of the Kissimmee River will require carefully defined criteria for assessing success. A goal of regaining communities mirroring those in the historical river may not be an appropriate target because the ecological conditions of the river before channelization are poorly known. The Kissimmee River is in a biogeographic region historically low in fish diversity, and no comparable rivers in that region remain substantially unaltered by human activity to permit their use as reference sites indicative of conditions in the Kissimmee before channelization. I propose alternative criteria for assessing restoration success emphasizing expectations for ecosystem function in similar floodplain rivers. Assessing ecosystem function will be less simple than assessing criteria such as fish condition or density of selected species. But criteria based solely on fish-population characteristics cannot be justified quantitatively. Information integrated from several levels of biotic organization (individuals, populations, communities, and systems) should be drawn upon in making conclusions about restoration success. I develop a conceptual model to outline aspects of ecosystem function that could serve as a basis for evaluation of the restoration of fish communities of the Kissimmee River. The model focuses on the dynamics of the flux of floodplain-channel nutrients and the movement of larvae, juvenile, and adult fishes and macroinvertebrates. The present community may be dominated more by species tolerant of low-oxygen conditions, such as gar and bowfin, than the restored community will be. I propose that nest sites may be the limiting recruitment success of substrate spawning species in the channelized river and that these species, including sunfish and large-mouth bass, will increase in abundance after restoration. Also, species relying on floodplain habitats, including sun-fish species, darters, and some minnows, may also increase in frequency with restoration of floodplain-channel hydro-logical conditions and habitats. The observation that no species are known to have disappeared from the Kissimmee River, and its relatively simple community structure compared to rivers of comparable size elsewhere, are encouraging for prospects of successful restoration.  相似文献   

5.
Many studies have documented long-term changes in adult marine fish distributions and linked these changes to climate change and multi-decadal climate variability. Most marine fish, however, have complex life histories with morphologically distinct stages, which use different habitats. Shifts in distribution of one stage may affect the connectivity between life stages and thereby impact population processes including spawning and recruitment. Specifically, many marine fish species have a planktonic larval stage, which lasts from weeks to months. We compared the spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem to test whether spatial and temporal distributions changed between two decades. Two large-scale ichthyoplankton programs sampled using similar methods and spatial domain each decade. Adult distributions from a long-term bottom trawl survey over the same time period and spatial area were also analyzed using the same analytical framework to compare changes in larval and adult distributions between the two decades. Changes in spatial distribution of larvae occurred for 43% of taxa, with shifts predominately northward (i.e., along-shelf). Timing of larval occurrence shifted for 49% of the larval taxa, with shifts evenly split between occurring earlier and later in the season. Where both larvae and adults of the same species were analyzed, 48% exhibited different shifts between larval and adult stages. Overall, these results demonstrate that larval fish distributions are changing in the ecosystem. The spatial changes are largely consistent with expectations from a changing climate. The temporal changes are more complex, indicating we need a better understanding of reproductive timing of fishes in the ecosystem. These changes may impact population productivity through changes in life history connectivity and recruitment, and add to the accumulating evidence for changes in the Northeast U.S. Shelf Ecosystem with potential to impact fisheries and other ecosystem services.  相似文献   

6.
Knowledge of the effects of environment and genotype on behavior during early ontogenetic stages of many fish species including lake sturgeon (Acipenser fulvescens) is generally lacking. Understanding these effects is particularly important at a time when human activities are fundamentally altering habitats and seasonal and diel physical and biotic stream features. Artificial stream channels were used in a controlled experiment to quantify lake sturgeon yolk‐sac larvae dispersal distance and stream substrate preference from different females (N = 2) whose eggs were incubated at different temperatures (10 and 18°C) that simulated stream conditions during early and late spawning and incubation periods in the Black River, Michigan. Data revealed that yolk‐sac larvae exhibited considerable variability in dispersal distance as a function of family (genotype), temperature experienced during previous (embryonic) ontogenetic stages, and environmental ‘grain’. Yolk‐sac larvae dispersal distance varied as a function of the juxtaposition of substrate to location of egg hatch. Lake sturgeon yolk‐sac larvae dispersed from mesh screens attached to bricks and settled exclusively in gravel substrate. Dispersal distance also varied as a function of family and egg incubation temperatures, reflecting differences in offspring body size and levels of endogenous yolk reserves (yolk sac area) at hatch. Expression of plasticity in dispersal behavior may be particularly important to individual survival and population levels of recruitment contingent upon the location, size, and degree of fragmentation of suitable (gravel) habitats between adult spawning and yolk‐sac larvae rearing areas.  相似文献   

7.
We have reviewed field data and studies on the behavior and development of Siberian sturgeon at early-life intervals and related them to different ecologically relevant environmental factors that may play a role in the distribution, recruitment, and survival of young fish. Four behavioral phases (swimming-up, rheotactism, shoaling, and foraging) are observed from hatching to the juvenile phase. Each behavior is associated with an early-life interval and might allow fish to occupy different river habitats, directly influencing their distribution, survival, and recruitment. River current intensity, substrate typology, food resources, and predation pressure seem to be the most important factors affecting the distribution of Siberian sturgeon free embryos and larvae, while juveniles and adult fish disperse and migrate according to food abundance and reproduction. Mechanisms involved in regulating downstream migration during Siberian sturgeon early life stages are different than those observed in anadromous sturgeon species. In all large Siberian rivers, with the exception of the Lake Baikal, the Siberian sturgeon is represented by population continuums, and in many cases the foraging range also includes the spawning areas. Ontogenetic changes in Siberian sturgeon behavior could be interpreted as a species-specific mechanism to maintain the population continuums described in this species without significant mixture of local populations within the river.  相似文献   

8.
1. Previous work has indicated, at least in two river systems, that some Characiformes species migrate from nutrient‐poor rivers to spawn in nutrient‐rich rivers. In the present work, larval and juvenile fish were surveyed to index spawning activity in order to determine whether this spawning pattern is repeated in nine major tributaries of the Amazon basin. 2. Adult Mylossoma aureum, M. duriventre, Colossoma macropomum, Anodus elongatus, Triportheus elongatus, Brycon cephalus, Semaprochilodus insignis, S. taeniurus and Prochilodus nigricans were recorded in nutrient‐poor and nutrient‐rich rivers. However, larval and juvenile individuals of these species were found in nutrient‐rich rivers only, indicating that spawning activity was restricted to that river type. 3. Concentration of suspended solids in the river was correlated with total ichthyoplankton density and related to species composition of juvenile characiform assemblages. 4. Our findings reinforce the hypothesis that nutrient‐rich rivers and associated floodplains function as spawning and nursery grounds, and suggest that they function as source habitats for these species in the Amazon Basin.  相似文献   

9.
1. Floodplain inundation provides many benefits to fish assemblages of floodplain river systems, particularly those with a predictable annual flood pulse that drives yearly peaks in fish production. In arid‐zone rivers, hydrological patterns are highly variable and the influence of irregular floods on fish production and floodplain energy subsidies may be less clear‐cut. To investigate the importance of floodplain inundation to a dryland river fish assemblage, we sampled fish life stages on the floodplain of Cooper Creek, an Australian arid‐zone river. Sampling was focused around Windorah during a major flood in January 2004 and in isolated waterholes in March 2004 following flood drawdown. 2. Of the 12 native species known to occur in this region, 11 were present on the floodplain, and all were represented by at least two of three life‐stages – larvae, juveniles or adult fish. Late stage larvae of six fish species were found on the floodplain. There were site‐specific differences in larval species assemblages, individual species abundances and larval distribution patterns among floodplain sites. 3. Significant growth was evident on the floodplain, particularly by larval and juvenile fish, reflecting the combination of high water temperatures and shallow, food rich habitats provided by the relatively flat floodplain. 4. Low variation in biomass, species richness and presence/absence of juvenile and adult fish across four floodplain sites indicates consistently high fish productivity across an extensive area. 5. Similarities and differences in fish biomass between the floodplain and isolated post‐flood waterholes suggest high rates of biomass transfer (involving the most abundant species) into local waterholes and, potentially, biomass transfer by some species to other waterholes in the catchment during floodplain inundation and after floods recede. 6. The high concentration of fish on this shallow floodplain suggests it could be a key area of high fish production that drives a significant proportion of waterhole productivity in the vicinity. The Windorah floodplain provides favourable conditions necessary for the spawning of some species and juvenile recruitment of the majority of species. It is also appears to be a significant conduit for the movements of fish that underpin high genetic similarity, hence population mixing, of many species throughout the Cooper Creek catchment. The high floodplain fish production in turn provides a significant energy subsidy to waterholes after floodwaters recede. 7. The identification of key sites of high fish production, such as the Windorah floodplain, may be important from a conservation perspective. Key management principles should be: maintenance of the natural flooding regime; identification of the most productive floodplain areas; and maintenance of their connectivity to anastomosing river channels and the remnant aquatic habitats that ultimately sustain this fish assemblage through long‐term dry/drought and flood cycles.  相似文献   

10.
The spawning areas and early development of long spiky-head carp, Luciobrama macrocephalus (Lacépède), an endemic fish species in China, were investigated in the Yangtze River and Pearl River of central and southeastern China between 1961 and 1993. The potamodromous fish migrated upstream to spawn between May and July as the floodwater began to rise. The water-hardened eggs drifted down the river, and the embryos and larvae developed in the course of drifting. The spawning areas of the fish were widely found in the upper and middle main channels and large tributaries. Two large dams (Gezhouba dam and Danjiangkou dam) did not significantly impact on the reproduction of the fish. Fifty stages of the early development from one cell to the juvenile with fully formed fins were observed and characterized pictorially. The larvae of long spiky-head carp could be distinguished from the larvae of other co-occurring species by counting the number of somites and comparing the proportion of sizes of eye to otic capsule.  相似文献   

11.
To manage populations of threatened fish species in modified habitats and regulated rivers requires an understanding of their reproductive biology and spawning cues. In particular, accurate information about early life stages in these species can be used to facilitate programmes that maximise recruitment and breeding success. This study aimed to develop methods to accurately age early juvenile freshwater native fish, Two‐spined Blackfish, (Gadopsis bispinosus), to allow the determination of spawning date. This was accomplished through the examination of otolith microstructure in early juveniles. The age at which the first ring was deposited and the relationship between days and number of rings were determined using both field and aquarium trials. Field trials of marked juvenile otoliths revealed daily deposition of rings (1.02 ± 0.02 rings per day for fish sacrificed six days postmarking). The strength of this relationship lessened slightly as juveniles aged (0.92 ± 0.02 rings per day for fish sacrificed 13 days postmarking). The first otolith ring was deposited 7.50 ± 1.09 days after spawning. The enumeration of daily rings combined with knowledge of the commencement of ring deposition enabled accurate estimation of spawning date. The current study is the first to examine otolith microstructure in juvenile Two‐spined Blackfish allowing accurate determination of spawning date. While more research is required to accurately age older juveniles, this technique has the potential to precisely correlate spawning with environmental cues, facilitating better management of temperature and flow during breeding periods, potentially increasing spawning and recruitment of this endangered species.  相似文献   

12.
13.
River regulation and fish larvae: variation through space and time   总被引:4,自引:0,他引:4  
1. Patterns in abundance and distribution of larval fish in a heavily regulated and a mildly regulated Australian lowland river were compared over four breeding seasons to gain some insight into how river regulation affects fish populations.
2. Larvae from a total of 13 species from nine families were recorded from the two rivers. The mildly regulated Broken River supported twice as many species as the heavily regulated Campaspe River. The two rivers shared three introduced species but only two native species. The dominant species in the Campaspe was not found in the Broken River.
3. The two most abundant species in the Campaspe were classified as `opportunists'. They are small, short-lived species, which spawn for up to 9 months, encompassing extremes in temperature and flow. The extended spawning period may place a subset of larvae in optimal conditions for recruitment and is hypothesised as being the key to the success of these species.
4. Most species spawned each year, despite large interannual variation in flow and temperature conditions. Poor recruitment over several decades, rather than a failure to spawn, is considered the most likely explanation for differences in the larval fish faunas between the two rivers.
5. The highly regulated section of the Campaspe River downstream of the regulating impoundment is thought to provide suboptimal habitat conditions for larvae relative to the less regulated downstream sections.
6. The timing of occurrence of larvae of the dominant species varied by breeding season and may be the result of flexibility in the timing of spawning.  相似文献   

14.
Knowledge of the biology of native fishes of the Murray-Darling Basin is based largely on studies conducted under hatchery conditions and on a limited number of recreationally important species. From observations that increases in water level in aquaculture ponds initiate spawning in some species, and from limited studies of wild fishes and studies in overseas floodplain river systems, a perception has emerged of the importance of flooding and the flood plain in the life cycles of Murray-Darling fishes in general. However, there is little confirmatory evidence of the use of temporary floodplain habitats by larvae, juveniles or adults. The significance of in-channel habitats, especially for rearing, has received little attention. Murray-Darling fish species can be placed into three life history modes, based mainly on spawning style and time and developmental intervals of larvae at first feeding. Fish in each group may be able to take advantage of floods if the timing is right and prey are plentiful, however, the larvae of some species are able to recruit under non-flood conditions within the main river channel. This forms the basis of the low flow recruitment hypothesis, which attempts to explain why some species spawn during the warmest months and lowest flows and how they are able to recruit under these conditions. This hypothesis is then placed in the context of the current state of knowledge of the relationships between flow and the biology of Murray-Darling fishes, specifically cues for spawning, movement and recruitment. The lack of widespread evidence for floodplain use by any life history interval of fish may be due to a paucity of study, however, there are some fundamental factors, such as the predictability of timing and duration of high flow events as well as the lack of coincidence of high flows and high temperatures in some regions of the Basin, which may be important in determining the use of floodplain habitats by fish.  相似文献   

15.
The plankton of Bahia de la Ascension was sampled monthly, from August 1990 to July 1991, to ascertain ichthyoplankton composition, abundance, and seasonality. These data were used to assess the inferred function of the bay as spawning and nursery grounds. Fifty-one families, 66 genera, and 53 species of fish embryos and larvae were identified. Engraulidae, Clupeidae, Labrisomidae, Callionymidae, Gerreidae, and Gobiidae comprised 81.5% of the larvae captured: the remaining 18.5% included several coral reef fish families. Greatest mean fish egg densities were recorded between December and April, 341–246 per 100m3, suggesting a major spawning period. The monthly mean density of total fish embryos and larvae showed two peaks: one in late dry season (June), dominated by newly hatched engraulid, and a second (December) during the cold-front season with high densities of preflexion labrisomid and engraulid embryos. When labrisomid and engraulid embryos and larvae were excluded, densities peaked in the rainy season (July to October). Gerreidae and Callionymidae were significantly more abundant in the rainy season, while Labrisomidae and Gobiidae in the cold-front season. The highest embryos and larvae richness was observed in August during the rainy season with mean value significatively greater than those from cold-front and dry seasons. The occurrence of high egg densities and the wide range of embryos and larva stages are evidences that Bahia de la Ascension is a regionally important spawning and nursery ground for marine fish. Because this study covered partially the marine ecosystem of Bahia de la Ascension using convential gear, we suggest to conduct further research for have a full understanding of the importance of this bay for fish recruitment.  相似文献   

16.
The flood regime is the most important force determining seasonality in neotropical rivers. In the Upper Paran River floodplain, it is the primary factor influencing biological processes. The aim of this paper is to summarize information on the influence of dam-controlled floods on some fish assemblage attributes, reproduction and recruitment in the Upper Paran River floodplain, providing preliminary guidelines for dam operation upstream. Fish were collected in different habitats of the Upper Paran River floodplain (river, channels and lagoons) in the period from 1986 to 2001. The high water period in the Paran River usually occurs from November/December to April/May. Annual variation in the hydrograph affects species with distinct life history strategies differently, and influences the composition and structure of fish assemblages. Large floods were associated with higher species richness. Frequencies of individuals with ripe and partially spent gonads, which indicate spawning, were higher during the period of increasing water level. Dependence on floods seems to be lowest in sedentary species that develop parental care, and highest in large migratory species that spawn in the upper stretches of the basin and use flooded areas as nurseries. Migratory fishes were favored by annual floods that lasted more than 75 days, with longer floods yielding larger populations. The occurrence of high water levels at the beginning of summer is fundamental to the spawning success of migratory species. However, the flood may be less important for recruitment of juveniles if it is of short duration. Dam operation upstream (releasing more water during the raining season) has potential to promote greater floods with appropriate duration improving recruitment, particularly for migratory species.  相似文献   

17.
Alfred Russel Wallace proposed classifying Amazon rivers based on their colour and clarity: white, black and clear water. Wallace also proposed that black waters could mediate diversification and yield distinct fish species. Here, we bring evidence of speciation mediated by water type in the sailfin tetra (Crenuchus spilurus), a fish whose range encompasses rivers of very distinct hydrochemical conditions. Distribution of the two main lineages concords with Wallace's water types: one restricted to the acidic and nutrient‐poor waters of the Negro River (herein Rio Negro lineage) and a second widespread throughout the remaining of the species’ distribution (herein Amazonas lineage). These lineages occur over a very broad geographical range, suggesting that despite occurring in regions separated by thousands of kilometres, individuals of the distinct lineages fail to occupy each other's habitats, hundreds of metres apart and not separated by physical barrier. Reproductive isolation was assessed in isolated pairs exposed to black‐water conditions. All pairs with at least one individual of the lineage not native to black waters showed significantly lower spawning success, suggesting that the water type affected the fitness and contributed to reproductive isolation. Our results endorse Wallace's intuition and highlight the importance of ecological factors in shaping diversity of the Amazon fish fauna.  相似文献   

18.
In order to assess ecological values of Lower Rhine and Meuse floodplain habitats we studied the spatial and seasonal variation in diversity, species assemblages and feeding traits of caddisfly larvae in water bodies over the lateral connectivity gradient: eupotamon: main and secondary channels; parapotamon: channels connected permanently with the main channel only at their downstream ends; plesiopotamon: disconnected channels close to the main channel; paleopotamon: abandoned meanders at a greater distance from the main channel.Spatial variety was studied by analyzing the summer species composition in 70 Lower Rhine and Meuse water bodies which were categorized in connectivity habitats, whereas seasonal variety was studied in Lower Rhine water bodies along a connectivity gradient by monthly sampling over a whole year. Physico-chemical data and environmental parameters were recorded for each water body during sampling. Diversity and species assemblages of caddisfly larvae varied in relation to connectivity, macrophyte diversity and abundance and stream velocity. A comparison with historical records and species lists from less disturbed rivers showed that diversity in the main channel was very low.Caddisfly larvae species assemblages varied over the connectivity gradient. Lotic habitats (eupotamon) were separated from the lentic ones, and the well vegetated paleopotamon from the sparsely vegetated parapotamon and pleisopotamon habitats, indicating the overall importance of vegetation and current velocity for the species assemblages. Hydropsychidae have been found in the eupotamon exclusively, whereas Limnephilidae, Hydroptilidae and Polycentropodidae have been found predominantly in the paleopotamon water bodies. Leptoceridae were found in all floodplain water body categories. A similar pattern of distribution of families along the lateral connectivity gradient was found in more natural rivers.Caddisfly larvae species feeding traits showed a clear differentiation over the lateral connectivity gradient with filter-feeders and scrapers most important in the eupotamon and parapotamon, and shredders, piercers and predators most dominant in the paleopotamon habitats, indicating the importance of nutritional resources in relation to hydrological connectivity for the structure and functioning of caddisfly larvae species assemblages. The analysis of the species feeding traits allows generalizations towards the entire aquatic community and general prognoses for other floodplain ecosystems.  相似文献   

19.
In 2007 the alien invasive ctenophore Mnemiopsis leidyi A. Agassiz 1865 was recorded for the first time in the Bornholm Basin, an area which serves as important spawning ground for Baltic fish stocks. Since M. leidyi is capable of preying upon early life stages of fish and further might act as food competitor for fish larvae, it is of major concern to investigate the potential threat that this non-indigenous species poses to the pelagic ecosystem of the Baltic Sea. The present study investigates the temporal and spatial overlap of M. leidyi with eggs and larvae of Baltic cod (Gadus morhua L.) and sprat (Sprattus sprattus L.) in order to assess the potential impact of this new invader on two of the most important Baltic fish stocks. Results show variable inter-seasonal distribution and overlap dynamics and thus different seasonal threat-scenarios for the early life stages of cod and sprat. The spatial overlap between M. leidyi and ichthyoplankton was low for most of the period observed, and we conclude that M. leidyi presently does not have a strong impact. However, we detected situations with high overlaps, e.g. for sprat larvae and cod eggs in spring. As the population dynamics of M. leidyi in the central Baltic are not yet fully understood, a future population explosion of the alien ctenophore with possible effects on fish recruitment cannot be ruled out. Furthermore, a possible shift in peak spawning of cod to the early season, when ctenophore abundances were relatively high, might increase the impact of M. leidyi on cod.  相似文献   

20.
Spatio‐temporal recruitment patterns, growth and survival of the Swan River goby Pseudogobius olorum and western hardyhead Leptatherina wallacei are described from two small, coastal lagoons on the south coast of Western Australia. In these lagoons, estuarine salinity dynamics were relatively stable over much of the autumn–spring period when freshwater inputs from rivers were reduced and there was no oceanic connection. Preflexion and flexion stages of both fish species contributed strongly to population size structure in downstream reaches, whereas upstream reaches were dominated by postflexion larvae and juvenile stages. Spawning of both species was protracted and largely asynchronous, although the episodic presence of stronger preflexion and flexion cohorts suggested some synchronized spawning had occurred. Comparison with estuarine conditions over this period provided evidence that synchronized spawning may be related to temperature and salinity variations from a combination of freshwater inputs and periods of marine exchange. Uninterrupted growth and the progression of cohorts through to juvenile stages were consistent with the generally stable estuarine conditions. Larval and juvenile stages of both species were also tolerant of abrupt changes in salinity and temperature, which occurred due to a non‐seasonal oceanic connection. These findings were consistent with the euryhaline nature of adults of both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号